Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 22, Number 4—April 2016

Quantifying Transmission of Clostridium difficile within and outside Healthcare Settings

David P. DurhamComments to Author , Margaret A. Olsen, Erik R. Dubberke, Alison P. Galvani, and Jeffrey P. Townsend
Author affiliations: Yale School of Public Health, New Haven, Connecticut, USA (D.P. Durham, A.P. Galvani, J.P. Townsend); Washington University School of Medicine, St. Louis, Missouri, USA (M.A. Olsen, E.R. Dubberke)

Main Article

Table 1

Epidemiologic and clinical model parameters for infection with Clostridium difficile*

Parameter description Prior rate (95% CI)† Posterior rate (95% CI)† Reference
All-cause CDI mortality rate, % (28)
Age, y
<50 4.7 (2.6–7.6) 4.5 (2.6–7.5)
50–64 12 (8.7–16) 12 (8.5–16)
>65 16.6 (14–19) 17 (14–19)
Rate at which patients complete antimicrobial drug course 0.22 (0.17–2.29) 0.22 (0.17–2.29) (29)
Rate at which recurrence develops in recovered patients 0.13 (0.24–1) 0.2 (0.32–1.05) (30)
Rate at which patients not receiving antimicrobial drugs at increased risk for CDI revert to normal risk 0.038 (0.012–0.062) 0.033 (0.014–0.056) (15)
Rate of recovery from CDI 0.099 (0.090–0.11) 0.099 (0.092–0.11) (22)
Probability that a patient recovering from primary CDI will have >1 recurrence 22 (13–34) 24 (15–36) (16,17)
Probability that a patient recovering from a first recurrence will have a second recurrence 33 (19–48) 34 (20–48) (16,17)
Probability that a patient recovering from multiple recurrences will have an additional recurrence 56 (42–70) 56 (41–68) (17,18)
Relative risk for CDI developing while a patient receives antimicrobial drugs 8.9 (4.9–13.) 8.3 (4.2–12) (2,15)
Relative risk for CDI among persons 50–65 y of age vs. those <50 y of age 2.2 (1.4–3.4) 2.2 (1.5–3.0) (31)
Relative risk for CDI among persons >65 y of age compared with those <50 y of age 2.9 (1.9–4.4) 3.2 (2.1–4.3) (31)
Spontaneous clearance of asymptomatic C. difficile colonization 0.020 (0.015–0.025) 0.021 (0.016–0.026) (32)
Hospital protocols
All-cause fraction of community-onset CDI in patients who are hospitalized 0.26 (0.23–0.28) 0.26 (0.23–0.28) (26)
All-cause fraction of LTCF-onset CDI in patients who are hospitalized 0.27 (0.23–0.32) 0.27 (0.23–0.32) (27)
Increased attributable length of stay for hospitalized patients with CDI 3.1 (2.3–4.0) 3.1 (2.3–4.1) (1921)
Effectiveness of enhanced infection control measures in reducing transmission 53 (37–72) 52 (37–68) (22,23)
Probability that a patient with CDI is properly identified and given enhanced infection control measures 0.96 (0.93–0.99)‡ 0.96 (0.94–0.99) (24,25)
Antimicrobial drug use rates
Prescription rate among persons in community (33,34)
Age, y
<50 0.0013 (0.00095–0.0017) 0.0014 (0.00095–0.0018)
50–64 0.0014 (0.00097–0.0018) 0.0014 (0.00097–0.0017)
>65 0.0017 (0.0013–0.0021) 0.0017 (0.0013–0.0022)
Prescription rate among patients in hospital 0.37 (0.22–0.66) 0.37 (0.21–0.68) (29)
Prescription rate among patients in LTCF 0.0054 (0.0027–0.009) 0.0052 (0.0026–0.0087) (35)

*CDI, C. difficile infection; LTCF, long-term care facility.
†Parameter rates are per day unless otherwise indicated.
‡A total of 73% of sites initiated protocols before laboratory confirmation and 27% initiated protocols after confirmation. Sensitivity was 86% for laboratory tests, which yielded an effective diagnosis rate of 0.73 + 0.27 × 0.86 = 0.96.

Main Article

  1. Zilberberg  MD. Increase in adult Clostridium difficile–related hospitalizations and case-fatality rate, United States, 2000–2005. Emerg Infect Dis. 2008;14:92931. DOIPubMedGoogle Scholar
  2. Deshpande  A, Pasupuleti  V, Thota  P, Pant  C, Rolston  DD, Sferra  TJ, Community-associated Clostridium difficile infection and antibiotics: a meta-analysis. J Antimicrob Chemother. 2013;68:195161 . DOIPubMedGoogle Scholar
  3. Svenungsson  B, Burman  LG, Jalakas-Pornull  K, Lagergren  A, Struwe  J, Akerlund  T. Epidemiology and molecular characterization of Clostridium difficile strains from patients with diarrhea: low disease incidence and evidence of limited cross-infection in a Swedish teaching hospital. J Clin Microbiol. 2003;41:40317. DOIPubMedGoogle Scholar
  4. Walker  AS, Eyre  DW, Wyllie  DH, Dingle  KE, Harding  RM, O’Connor  L, Characterisation of Clostridium difficile hospital ward–based transmission using extensive epidemiological data and molecular typing. PLoS Med. 2012;9:e1001172. DOIPubMedGoogle Scholar
  5. Norén  T, Akerlund  T, Bäck  E, Sjöberg  L, Persson  I, Alriksson  I, Molecular epidemiology of hospital-associated and community-acquired Clostridium difficile infection in a Swedish county. J Clin Microbiol. 2004;42:363543. DOIPubMedGoogle Scholar
  6. Curry  SR, Muto  CA, Schlackman  JL, Pasculle  AW, Shutt  KA, Marsh  JW, Use of multilocus variable number of tandem repeats analysis genotyping to determine the role of asymptomatic carriers in Clostridium difficile transmission. Clin Infect Dis. 2013;57:1094102. DOIPubMedGoogle Scholar
  7. Lanzas  C, Dubberke  ER, Lu  Z, Reske  KA, Gröhn  YT. Epidemiological model for Clostridium difficile transmission in healthcare settings. Infect Control Hosp Epidemiol. 2011;32:55361. DOIPubMedGoogle Scholar
  8. Otten  AM, Reid-Smith  RJ, Fazil  A, Weese  JS. Disease transmission model for community-associated Clostridium difficile infection. Epidemiol Infect. 2010;138:90714. DOIPubMedGoogle Scholar
  9. Gerding  DN, Johnson  S. Management of Clostridium difficile infection: thinking inside and outside the box. Clin Infect Dis. 2010;51:130613. DOIPubMedGoogle Scholar
  10. Starr  JM, Rogers  TR, Impallomeni  M. Hospital-acquired Clostridium difficile diarrhoea and herd immunity. Lancet. 1997;349:4268. DOIPubMedGoogle Scholar
  11. Lofgren  ET, Moehring  RW, Anderson  DJ, Weber  DJ, Fefferman  NH. A mathematical model to evaluate the routine use of fecal microbiota transplantation to prevent incident and recurrent Clostridium difficile infection. Infect Control Hosp Epidemiol. 2014;35:1827. DOIPubMedGoogle Scholar
  12. Starr  JM, Campbell  A, Renshaw  E, Poxton  IR, Gibson  GJ. Spatio-temporal stochastic modelling of Clostridium difficile. J Hosp Infect. 2009;71:4956. DOIPubMedGoogle Scholar
  13. Yakob  L, Riley  TV, Paterson  DL, Clements  AC. Clostridium difficile exposure as an insidious source of infection in healthcare settings: an epidemiological model. BMC Infect Dis. 2013;13:376. DOIPubMedGoogle Scholar
  14. Rubin  MA, Jones  M, Leecaster  M, Khader  K, Ray  W, Huttner  A, A simulation-based assessment of strategies to control Clostridium difficile transmission and infection. PLoS ONE. 2013;8:e80671. DOIPubMedGoogle Scholar
  15. Dial  S, Kezouh  A, Dascal  A, Barkun  A, Suissa  S. Patterns of antibiotic use and risk of hospital admission because of Clostridium difficile infection. CMAJ. 2008;179:76772. DOIPubMedGoogle Scholar
  16. Lowy  I, Molrine  DC, Leav  BA, Blair  BM, Baxter  R, Gerding  DN, Treatment with monoclonal antibodies against Clostridium difficile toxins. N Engl J Med. 2010;362:197205 . DOIPubMedGoogle Scholar
  17. Figueroa  I, Johnson  S, Sambol  SP, Goldstein  EJC, Citron  DM, Gerding  DN. Relapse versus reinfection: recurrent Clostridium difficile infection following treatment with fidaxomicin or vancomycin. Clin Infect Dis. 2012;55(Suppl 2):S1049. DOIPubMedGoogle Scholar
  18. McFarland  LV. A randomized placebo-controlled trial of Saccharomyces boulardii in combination with standard antibiotics for Clostridium difficile disease. JAMA. 1994;271:19138. DOIPubMedGoogle Scholar
  19. Kyne  L, Hamel  MB, Polavaram  R, Kelly  CP. Health care costs and mortality associated with nosocomial diarrhea due to Clostridium difficile. Clin Infect Dis. 2002;34:34653. DOIPubMedGoogle Scholar
  20. Dubberke  ER, Butler  AM, Reske  KA, Agniel  D, Olsen  MA, D’Angelo  G, Attributable outcomes of endemic Clostridium difficile–associated disease in nonsurgical patients. Emerg Infect Dis. 2008;14:10318. DOIPubMedGoogle Scholar
  21. O’Brien  JA, Lahue  BJ, Caro  JJ, Davidson  DM. The emerging infectious challenge of Clostridium difficile–associated disease in Massachusetts hospitals: clinical and economic consequences. Infect Control Hosp Epidemiol. 2007;28:121927. DOIPubMedGoogle Scholar
  22. Jarvis  WR, Schlosser  J, Jarvis  AA, Chinn  RY. National point prevalence of Clostridium difficile in US health care facility inpatients, 2008. Am J Infect Control. 2009;37:26370. DOIPubMedGoogle Scholar
  23. Harris  AD, Pineles  L, Belton  B, Johnson  JK, Shardell  M, Loeb  M, Universal glove and gown use and acquisition of antibiotic-resistant bacteria in the ICU: a randomized trial. JAMA. 2013;310:157180 .PubMedGoogle Scholar
  24. Wilkinson  K, Gravel  D, Taylor  G, McGeer  A, Simor  A, Suh  K, Infection prevention and control practices related to Clostridium difficile infection in Canadian acute and long-term care institutions. Am J Infect Control. 2011;39:17782. DOIPubMedGoogle Scholar
  25. Sloan  LM, Duresko  BJ, Gustafson  DR, Rosenblatt  JE. Comparison of real-time PCR for detection of the tcdC gene with four toxin immunoassays and culture in diagnosis of Clostridium difficile infection. J Clin Microbiol. 2008;46:19962001. DOIPubMedGoogle Scholar
  26. Chitnis  AS, Holzbauer  SM, Belflower  RM, Winston  LG, Bamberg  WM, Lyons  C, Epidemiology of community-associated Clostridium difficile infection, 2009 through 2011. JAMA Intern Med. 2013;173:135967. DOIPubMedGoogle Scholar
  27. Pawar  D, Tsay  R, Nelson  DS, Elumalai  MK, Lessa  FC, Clifford McDonald  L, Burden of Clostridium difficile infection in long-term care facilities in Monroe County, New York. Infect Control Hosp Epidemiol. 2012;33:110712. DOIPubMedGoogle Scholar
  28. Hensgens  MP, Goorhuis  A, Dekkers  OM, van Benthem  BH, Kuijper  EJ. All-cause and disease-specific mortality in hospitalized patients with Clostridium difficile infection: a multicenter cohort study. Clin Infect Dis. 2013;56:110816. DOIPubMedGoogle Scholar
  29. Polk  RE, Hohmann  SF, Medvedev  S, Ibrahim  O. Benchmarking risk-adjusted adult antibacterial drug use in 70 US academic medical center hospitals. Clin Infect Dis. 2011;53:110010. DOIPubMedGoogle Scholar
  30. McFarland  LV, Elmer  GW, Surawicz  CM. Breaking the cycle: treatment strategies for 163 cases of recurrent Clostridium difficile disease. Am J Gastroenterol. 2002;97:176975. DOIPubMedGoogle Scholar
  31. Dubberke  ER, Reske  KA, Olsen  MA, McMullen  KM, Mayfield  JL, McDonald  LC, Evaluation of Clostridium difficile–associated disease pressure as a risk factor for C. difficile-associated disease. Arch Intern Med. 2007;167:10927. DOIPubMedGoogle Scholar
  32. Simor  AE, Yake  SL, Tsimidis  K. Infection due to Clostridium difficile among elderly residents of a long-term-care facility. Clin Infect Dis. 1993;17:6728. DOIPubMedGoogle Scholar
  33. Zhang  Y, Steinman  MA, Kaplan  CM. Geographic variation in outpatient antibiotic prescribing among older adults. Arch Intern Med. 2012;172:146571. DOIPubMedGoogle Scholar
  34. Hicks  LA, Taylor  TH, Hunkler  RJ. Outpatient antibiotic prescribing, 2010. N Engl J Med. 2013;368:14612. DOIPubMedGoogle Scholar
  35. Mylotte  JM. Antimicrobial prescribing in long-term care facilities: prospective evaluation of potential antimicrobial use and cost indicators. Am J Infect Control. 1999;27:109. DOIPubMedGoogle Scholar
  36. McDonald  LC, Owings  M, Jernigan  D. Clostridium difficile infection in patients discharged from US short-stay hospitals, 1996–2003. Emerg Infect Dis. 2006;12:40915. DOIPubMedGoogle Scholar
  37. Galdys  AL, Nelson  JS, Shutt  KA, Schlackman  JL, Pakstis  DL, Pasculle  AW, Prevalence and duration of asymptomatic Clostridium difficile carriage among healthy subjects in Pittsburgh, Pennsylvania. J Clin Microbiol. 2014;52:24069. DOIPubMedGoogle Scholar
  38. Alasmari  F, Seiler  SM, Hink  T, Burnham  C-AD, Dubberke  ER. Prevalence and risk factors for asymptomatic Clostridium difficile carriage. Clin Infect Dis. 2014;59:21622. DOIPubMedGoogle Scholar
  39. Loo  VG, Bourgault  A-M, Poirier  L, Lamothe  F, Michaud  S, Turgeon  N, Host and pathogen factors for Clostridium difficile infection and colonization. N Engl J Med. 2011;365:1693703. DOIPubMedGoogle Scholar
  40. Metropolis  N, Rosenbluth  AW, Rosenbluth  MN, Teller  AH, Teller  E. Equation of state calculations by fast computing machines. J Chem Phys. 1953;21:1087. DOIGoogle Scholar

Main Article

Page created: March 15, 2016
Page updated: March 15, 2016
Page reviewed: March 15, 2016
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.