Volume 23, Number 11—November 2017
Dispatch
Phylogenetic Analysis of Klebsiella pneumoniae from Hospitalized Children, Pakistan
Figure 2
![Figure 2. Phylogenetic analysis demonstrating the diversity of Klebsiella pneumoniae isolates from clinical samples collected during May 2010–February 2012 from The Children’s Hospital & The Institute of Child Health, Lahore, Pakistan, in a global context. The core gene tree based on the alignment derived from Roary (12) was calculated using RAxML (14) and shows the wide diversity of samples analyzed in this study (inner ring, yellow) in context with a large-scale global analysis (inner ring, blue [4]) and 2 hospital outbreaks, which show a more clonal pattern (inner ring: red, outbreak in Spain [11]; green, outbreak in Nepal [3]). The sequence types observed (outer ring) also reflect the diversity; most sequence types have <10 members even in this combined collection. STs, sequence types. Phylogenetic analysis demonstrating the diversity of Klebsiella pneumoniae isolates from clinical samples collected during May 2010–February 2012 from The Children’s Hospital & The Institute of Child Health, Lahore, Pakistan, in a global context. The core gene tree based on the alignment derived from Roary (12) was calculated using RAxML (14) and shows the wide diversity of samples analyzed in this study (inner ring, yellow) in context with a large-scale global analysis (inner ring, blue [4]](/eid/images/17-0833-F2.jpg)
Figure 2. Phylogenetic analysis demonstrating the diversity of Klebsiella pneumoniae isolates from clinical samples collected during May 2010–February 2012 from The Children’s Hospital & The Institute of Child Health, Lahore, Pakistan, in a global context. The core gene tree based on the alignment derived from Roary (12) was calculated using RAxML (14) and shows the wide diversity of samples analyzed in this study (inner ring, yellow) in context with a large-scale global analysis (inner ring, blue [4]) and 2 hospital outbreaks, which show a more clonal pattern (inner ring: red, outbreak in Spain [11]; green, outbreak in Nepal [3]). The sequence types observed (outer ring) also reflect the diversity; most sequence types have <10 members even in this combined collection. STs, sequence types.
References
- Holt KE, Wertheim H, Zadoks RN, Baker S, Whitehouse CA, Dance D, et al. Genomic analysis of diversity, population structure, virulence, and antimicrobial resistance in Klebsiella pneumoniae, an urgent threat to public health. Proc Natl Acad Sci U S A. 2015;112:E3574–81. DOIPubMedGoogle Scholar
- Lee CR, Lee JH, Park KS, Kim YB, Jeong BC, Lee SH. Global dissemination of carbapenemase-producing Klebsiella pneumoniae: epidemiology, genetic context, treatment options, and detection methods. Front Microbiol. 2016;7:895. DOIPubMedGoogle Scholar
- Centers for Disease Control and Prevention. New carbapenem-resistant Enterobacteriaceae warrant additional action by healthcare providers [cited 2017 Jan 5]. https://emergency.cdc.gov/han/han00341.asp
- Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing; twentieth informational supplement. M100-S20. Wayne (PA): The Institute; 2010.
- Page AJ, De Silva N, Hunt M, Quail MA, Parkhill J, Harris SR, et al. Robust high-throughput prokaryote de novo assembly and improvement pipeline for Illumina data. Microb Genom. 2016;2:e000083. DOIPubMedGoogle Scholar
- Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics. 2014;30:2068–9. DOIPubMedGoogle Scholar
- Ondov BD, Treangen TJ, Melsted P, Mallonee AB, Bergman NH, Koren S, et al. Mash: fast genome and metagenome distance estimation using MinHash. Genome Biol. 2016;17:132. DOIPubMedGoogle Scholar
- Brisse S, Passet V, Grimont PA. Description of Klebsiella quasipneumoniae sp. nov., isolated from human infections, with two subspecies, Klebsiella quasipneumoniae subsp. quasipneumoniae subsp. nov. and Klebsiella quasipneumoniae subsp. similipneumoniae subsp. nov., and demonstration that Klebsiella singaporensis is a junior heterotypic synonym of Klebsiella variicola. Int J Syst Evol Microbiol. 2014;64:3146–52. DOIPubMedGoogle Scholar
- Page AJ, Taylor B, Delaney AJ, Soares J, Seemann T, Keane JA, et al. SNP-sites: rapid efficient extraction of SNPs from multi-FASTA alignments. Microb Genom. 2016;2:e000056. DOIPubMedGoogle Scholar
- Arena F, Henrici De Angelis L, Pieralli F, Di Pilato V, Giani T, Torricelli F, et al. Draft genome sequence of the first hypermucoviscous Klebsiella quasipneumoniae subsp. quasipneumoniae isolate from a bloodstream infection. Genome Announc. 2015;3:e00952–15. DOIPubMedGoogle Scholar
1These authors contributed equally to this article.
2Current affiliation: CAMS, Aljouf University, Aljouf, Saudi Arabia.