Renke Lühken
, Hanna Jöst, Daniel Cadar, Stephanie Margarete Thomas, Stefan Bosch, Egbert Tannich, Norbert Becker, Ute Ziegler, Lars Lachmann, and Jonas Schmidt-Chanasit
Author affiliations: Bernhard Nocht Institute for Tropical Medicine, World Health Organization Collaborating Centre for Arbovirus and Hemorrhagic Fever Reference and Research, Hamburg, Germany (R. Lühken, H. Jöst, D. Cadar, E. Tannich, J. Schmidt-Chanasit); German Centre for Infection Research (DZIF), partner site Hamburg-Luebeck-Borstel, Hamburg (H. Jöst, E. Tannich, J. Schmidt-Chanasit); University of Bayreuth, Bayreuth, Germany (S.M. Thomas); Nature and Biodiversity Conservation Union (NABU), Stuttgart, Germany (S. Bosch); Institute for Dipterology, Speyer, Germany (N. Becker); University of Heidelberg, Heidelberg, Germany (N. Becker); Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany (U. Ziegler); Nature and Biodiversity Conservation Union (NABU), Berlin, Germany (L. Lachmann)
Figure 3. Index curves of the generalized additive model (GAM) approach with 300 bootstraps for breeding bird survey data of 4 bird species for Usutu virus (USUV)–suitable and USUV-unsuitable areas in Germany, 2016. A) Common blackbird; B) Eurasian tree sparrow; C) house sparrow; D) great tit. Solid lines indicate the mean indices from a GAM with 3 df; dashed/dotted lines represent nonoverlapping 95% bootstrap CIs. The horizontal line indicates the baseline year 2011 (index = 100), which is the last time point when bird abundance data were collected before the first known epizootic outbreak of USUV in Germany. Double arrows indicate the difference between the mean index curves for 2016.