Synopses
Fatal Outbreak in Tonkean Macaques Caused by Possibly Novel Orthopoxvirus, Italy, January 2015
In January 2015, during a 3-week period, 12 captive Tonkean macacques at a sanctuary in Italy died. An orthopoxvirus infection was suspected because of negative-staining electron microscopy results. The diagnosis was confirmed by histology, virus isolation, and molecular analysis performed on different organs from all animals. An epidemiologic investigation was unable to define the infection source in the surrounding area. Trapped rodents were negative by virologic testing, but specific IgG was detected in 27.27% of small rodents and 14.28% of rats. An attenuated live vaccine was administered to the susceptible monkey population, and no adverse reactions were observed; a detectable humoral immune response was induced in most of the vaccinated animals. We performed molecular characterization of the orthopoxvirus isolate by next-generation sequencing. According to the phylogenetic analysis of the 9 conserved genes, the virus could be part of a novel clade, lying between cowpox and ectromelia viruses.
EID | Cardeti G, Gruber C, Eleni C, Carletti F, Castilletti C, Manna G, et al. Fatal Outbreak in Tonkean Macaques Caused by Possibly Novel Orthopoxvirus, Italy, January 2015. Emerg Infect Dis. 2017;23(12):1941-1949. https://doi.org/10.3201/eid2312.162098 |
---|---|
AMA | Cardeti G, Gruber C, Eleni C, et al. Fatal Outbreak in Tonkean Macaques Caused by Possibly Novel Orthopoxvirus, Italy, January 2015. Emerging Infectious Diseases. 2017;23(12):1941-1949. doi:10.3201/eid2312.162098. |
APA | Cardeti, G., Gruber, C., Eleni, C., Carletti, F., Castilletti, C., Manna, G....Autorino, G. (2017). Fatal Outbreak in Tonkean Macaques Caused by Possibly Novel Orthopoxvirus, Italy, January 2015. Emerging Infectious Diseases, 23(12), 1941-1949. https://doi.org/10.3201/eid2312.162098. |
Spread of Canine Influenza A(H3N2) Virus, United States
A canine influenza A(H3N2) virus emerged in the United States in February–March 2015, causing respiratory disease in dogs. The virus had previously been circulating among dogs in Asia, where it originated through the transfer of an avian-origin influenza virus around 2005 and continues to circulate. Sequence analysis suggests the US outbreak was initiated by a single introduction, in Chicago, of an H3N2 canine influenza virus circulating among dogs in South Korea in 2015. Despite local control measures, the virus has continued circulating among dogs in and around Chicago and has spread to several other areas of the country, particularly Georgia and North Carolina, although these secondary outbreaks appear to have ended within a few months. Some genetic variation has accumulated among the US viruses, with the appearance of regional-temporal lineages. The potential for interspecies transmission and zoonotic events involving this newly emerged influenza A virus is currently unknown.
EID | Voorhees I, Glaser AL, Toohey-Kurth KL, Newbury S, Dalziel BD, Dubovi E, et al. Spread of Canine Influenza A(H3N2) Virus, United States. Emerg Infect Dis. 2017;23(12):1950-1957. https://doi.org/10.3201/eid2312.170246 |
---|---|
AMA | Voorhees I, Glaser AL, Toohey-Kurth KL, et al. Spread of Canine Influenza A(H3N2) Virus, United States. Emerging Infectious Diseases. 2017;23(12):1950-1957. doi:10.3201/eid2312.170246. |
APA | Voorhees, I., Glaser, A. L., Toohey-Kurth, K. L., Newbury, S., Dalziel, B. D., Dubovi, E....Parrish, C. R. (2017). Spread of Canine Influenza A(H3N2) Virus, United States. Emerging Infectious Diseases, 23(12), 1950-1957. https://doi.org/10.3201/eid2312.170246. |
Research
Experimental Infection of Common Eider Ducklings with Wellfleet Bay Virus, a Newly Characterized Orthomyxovirus
Wellfleet Bay virus (WFBV), a novel orthomyxovirus in the genus Quaranjavirus, was first isolated in 2006 from carcasses of common eider (Somateria mollissima) during a mortality event in Wellfleet Bay (Barnstable County, Massachusetts, USA) and has since been repeatedly isolated during recurrent mortality events in this location. Hepatic, pancreatic, splenic, and intestinal necrosis was observed in dead eiders. We inoculated 6-week-old common eider ducklings with WFBV in an attempt to recreate the naturally occurring disease. Approximately 25% of inoculated eiders had onset of clinical disease and required euthanasia; an additional 18.75% were adversely affected based on net weight loss during the trial. Control ducklings did not become infected and did not have clinical disease. Infected ducklings with clinical disease had pathologic lesions consistent with those observed during natural mortality events. WFBV was reisolated from 37.5% of the inoculated ducklings. Ducklings surviving to 5 days postinoculation developed serum antibody titers to WFBV.
EID | Shearn-Bochsler V, Ip H, Ballmann A, Hall JS, Allison AB, Ballard J, et al. Experimental Infection of Common Eider Ducklings with Wellfleet Bay Virus, a Newly Characterized Orthomyxovirus. Emerg Infect Dis. 2017;23(12):1958-1965. https://doi.org/10.3201/eid2312.160366 |
---|---|
AMA | Shearn-Bochsler V, Ip H, Ballmann A, et al. Experimental Infection of Common Eider Ducklings with Wellfleet Bay Virus, a Newly Characterized Orthomyxovirus. Emerging Infectious Diseases. 2017;23(12):1958-1965. doi:10.3201/eid2312.160366. |
APA | Shearn-Bochsler, V., Ip, H., Ballmann, A., Hall, J. S., Allison, A. B., Ballard, J....Dwyer, C. (2017). Experimental Infection of Common Eider Ducklings with Wellfleet Bay Virus, a Newly Characterized Orthomyxovirus. Emerging Infectious Diseases, 23(12), 1958-1965. https://doi.org/10.3201/eid2312.160366. |
Evolutionary Context of Non–Sorbitol-Fermenting Shiga Toxin–Producing Escherichia coli O55:H7
In July 2014, an outbreak of Shiga toxin–producing Escherichia coli (STEC) O55:H7 in England involved 31 patients, 13 (42%) of whom had hemolytic uremic syndrome. Isolates were sequenced, and the sequences were compared with publicly available sequences of E. coli O55:H7 and O157:H7. A core-genome phylogeny of the evolutionary history of the STEC O55:H7 outbreak strain revealed that the most parsimonious model was a progenitor enteropathogenic O55:H7 sorbitol-fermenting strain, lysogenized by a Shiga toxin (Stx) 2a–encoding phage, followed by loss of the ability to ferment sorbitol because of a non-sense mutation in srlA. The parallel, convergent evolutionary histories of STEC O157:H7 and STEC O55:H7 may indicate a common driver in the evolutionary process. Because emergence of STEC O157:H7 as a clinically significant pathogen was associated with acquisition of the Stx2a-encoding phage, the emergence of STEC O55:H7 harboring the stx2a gene is of public health concern.
EID | Schutz K, Cowley LA, Shaaban S, Carroll A, McNamara E, Gally DL, et al. Evolutionary Context of Non–Sorbitol-Fermenting Shiga Toxin–Producing Escherichia coli O55:H7. Emerg Infect Dis. 2017;23(12):1966-1973. https://doi.org/10.3201/eid2312.170628 |
---|---|
AMA | Schutz K, Cowley LA, Shaaban S, et al. Evolutionary Context of Non–Sorbitol-Fermenting Shiga Toxin–Producing Escherichia coli O55:H7. Emerging Infectious Diseases. 2017;23(12):1966-1973. doi:10.3201/eid2312.170628. |
APA | Schutz, K., Cowley, L. A., Shaaban, S., Carroll, A., McNamara, E., Gally, D. L....Dallman, T. J. (2017). Evolutionary Context of Non–Sorbitol-Fermenting Shiga Toxin–Producing Escherichia coli O55:H7. Emerging Infectious Diseases, 23(12), 1966-1973. https://doi.org/10.3201/eid2312.170628. |
Multiple Reassorted Viruses as Cause of Highly Pathogenic Avian Influenza A(H5N8) Virus Epidemic, the Netherlands, 2016
In 2016, an epidemic of highly pathogenic avian influenza A virus subtype H5N8 in the Netherlands caused mass deaths among wild birds, and several commercial poultry farms and captive bird holdings were affected. We performed complete genome sequencing to study the relationship between the wild bird and poultry viruses. Phylogenetic analysis showed that the viruses are related to H5 clade 2.3.4.4 viruses detected in Russia in May 2016 but contained novel polymerase basic 2 and nucleoprotein gene segments and 2 different variants of the polymerase acidic segment. Molecular dating suggests that the reassortment events most likely occurred in wild birds in Russia or Mongolia. Furthermore, 2 genetically distinct H5N5 reassortant viruses were detected in wild birds in the Netherlands. Our study provides evidence for fast and continuing reassortment of H5 clade 2.3.4.4 viruses, which might lead to rapid changes in virus characteristics, such as pathogenicity, infectivity, transmission, and zoonotic potential.
EID | Beerens N, Heutink R, Bergervoet SA, Harders F, Bossers A, Koch G. Multiple Reassorted Viruses as Cause of Highly Pathogenic Avian Influenza A(H5N8) Virus Epidemic, the Netherlands, 2016. Emerg Infect Dis. 2017;23(12):1974-1981. https://doi.org/10.3201/eid2312.171062 |
---|---|
AMA | Beerens N, Heutink R, Bergervoet SA, et al. Multiple Reassorted Viruses as Cause of Highly Pathogenic Avian Influenza A(H5N8) Virus Epidemic, the Netherlands, 2016. Emerging Infectious Diseases. 2017;23(12):1974-1981. doi:10.3201/eid2312.171062. |
APA | Beerens, N., Heutink, R., Bergervoet, S. A., Harders, F., Bossers, A., & Koch, G. (2017). Multiple Reassorted Viruses as Cause of Highly Pathogenic Avian Influenza A(H5N8) Virus Epidemic, the Netherlands, 2016. Emerging Infectious Diseases, 23(12), 1974-1981. https://doi.org/10.3201/eid2312.171062. |
Outbreaks of Neuroinvasive Astrovirus Associated with Encephalomyelitis, Weakness, and Paralysis among Weaned Pigs, Hungary
A large, highly prolific swine farm in Hungary had a 2-year history of neurologic disease among newly weaned (25- to 35-day-old) pigs, with clinical signs of posterior paraplegia and a high mortality rate. Affected pigs that were necropsied had encephalomyelitis and neural necrosis. Porcine astrovirus type 3 was identified by reverse transcription PCR and in situ hybridization in brain and spinal cord samples in 6 animals from this farm. Among tissues tested by quantitative RT-PCR, the highest viral loads were detected in brain stem and spinal cord. Similar porcine astrovirus type 3 was also detected in archived brain and spinal cord samples from another 2 geographically distant farms. Viral RNA was predominantly restricted to neurons, particularly in the brain stem, cerebellum (Purkinje cells), and cervical spinal cord. Astrovirus was generally undetectable in feces but present in respiratory samples, indicating a possible respiratory infection. Astrovirus could cause common, neuroinvasive epidemic disease.
EID | Boros Á, Albert M, Pankovics P, Bíró H, Pesavento PA, Phan T, et al. Outbreaks of Neuroinvasive Astrovirus Associated with Encephalomyelitis, Weakness, and Paralysis among Weaned Pigs, Hungary. Emerg Infect Dis. 2017;23(12):1982-1993. https://doi.org/10.3201/eid2312.170804 |
---|---|
AMA | Boros Á, Albert M, Pankovics P, et al. Outbreaks of Neuroinvasive Astrovirus Associated with Encephalomyelitis, Weakness, and Paralysis among Weaned Pigs, Hungary. Emerging Infectious Diseases. 2017;23(12):1982-1993. doi:10.3201/eid2312.170804. |
APA | Boros, Á., Albert, M., Pankovics, P., Bíró, H., Pesavento, P. A., Phan, T....Reuter, G. (2017). Outbreaks of Neuroinvasive Astrovirus Associated with Encephalomyelitis, Weakness, and Paralysis among Weaned Pigs, Hungary. Emerging Infectious Diseases, 23(12), 1982-1993. https://doi.org/10.3201/eid2312.170804. |
Distribution of Usutu Virus in Germany and Its Effect on Breeding Bird Populations
Usutu virus (USUV) is an emerging mosquitoborne flavivirus with an increasing number of reports from several countries in Europe, where USUV infection has caused high avian mortality rates. However, 20 years after the first observed outbreak of USUV in Europe, there is still no reliable assessment of the large-scale impact of USUV outbreaks on bird populations. In this study, we identified the areas suitable for USUV circulation in Germany and analyzed the effects of USUV on breeding bird populations. We calculated the USUV-associated additional decline of common blackbird (Turdus merula) populations as 15.7% inside USUV-suitable areas but found no significant effect for the other 14 common bird species investigated. Our results show that the emergence of USUV is a further threat for birds in Europe and that the large-scale impact on population levels, at least for common blackbirds, must be considered.
EID | Lühken R, Jöst H, Cadar D, Thomas S, Bosch S, Tannich E, et al. Distribution of Usutu Virus in Germany and Its Effect on Breeding Bird Populations. Emerg Infect Dis. 2017;23(12):1994-2001. https://doi.org/10.3201/eid2312.171257 |
---|---|
AMA | Lühken R, Jöst H, Cadar D, et al. Distribution of Usutu Virus in Germany and Its Effect on Breeding Bird Populations. Emerging Infectious Diseases. 2017;23(12):1994-2001. doi:10.3201/eid2312.171257. |
APA | Lühken, R., Jöst, H., Cadar, D., Thomas, S., Bosch, S., Tannich, E....Schmidt-Chanasit, J. (2017). Distribution of Usutu Virus in Germany and Its Effect on Breeding Bird Populations. Emerging Infectious Diseases, 23(12), 1994-2001. https://doi.org/10.3201/eid2312.171257. |
We assessed microbial safety and quality of raw fish sold in Singapore during 2015–2016 to complement epidemiologic findings for an outbreak of infection with group B Streptococcus serotype III sequence type (ST) 283 associated with raw fish consumption. Fish-associated group B Streptococcus ST283 strains included strains nearly identical (0–2 single-nucleotide polymorphisms) with the human outbreak strain, as well as strains in another distinct ST283 clade (57–71 single-nucleotide polymorphisms). Our investigations highlight the risk for contamination of freshwater fish (which are handled and distributed separately from saltwater fish sold as sashimi) and the need for improved hygienic handling of all fish for raw consumption. These results have led to updated policy and guidelines regarding the sale of ready-to-eat raw fish dishes in Singapore.
EID | Chau ML, Chen SL, Yap M, Hartantyo S, Chiew P, Fernandez CJ, et al. Group B Streptococcus Infections Caused by Improper Sourcing and Handling of Fish for Raw Consumption, Singapore, 2015–2016. Emerg Infect Dis. 2017;23(12):2002-2010. https://doi.org/10.3201/eid2312.170596 |
---|---|
AMA | Chau ML, Chen SL, Yap M, et al. Group B Streptococcus Infections Caused by Improper Sourcing and Handling of Fish for Raw Consumption, Singapore, 2015–2016. Emerging Infectious Diseases. 2017;23(12):2002-2010. doi:10.3201/eid2312.170596. |
APA | Chau, M. L., Chen, S. L., Yap, M., Hartantyo, S., Chiew, P., Fernandez, C. J....Ng, L. C. (2017). Group B Streptococcus Infections Caused by Improper Sourcing and Handling of Fish for Raw Consumption, Singapore, 2015–2016. Emerging Infectious Diseases, 23(12), 2002-2010. https://doi.org/10.3201/eid2312.170596. |
Characterization of Streptococcus pyogenes from Animal Clinical Specimens, Spain
Streptococcus pyogenes appears to be almost exclusively restricted to humans, with few reports on isolation from animals. We provide a detailed characterization (emm typing, pulsed-field gel electrophoresis [PFGE], and multilocus sequence typing [MLST]) of 15 S. pyogenes isolates from animals associated with different clinical backgrounds. We also investigated erythromycin resistance mechanisms and phenotypes and virulence genes. We observed 2 emm types: emm12 (11 isolates) and emm77 (4 isolates). Similarly, we observed 2 genetic linages, sequence type (ST) 26 and ST63. Most isolates exhibited the M macrolide resistance phenotype and the mefA/ermB genotype. Isolates were grouped into 2 clones on the basis of emm-MLST-PFGE-virulence gene profile combinations: clone 1, characterized by the combined genotype emm12-ST36-pulsotype A-speG; and clone 2, characterized by the genotype emm77-ST63-pulsotype B-speC. Our results do not show conclusively that animals may represent a new reservoir of S. pyogenes but indicate the ability of human-derived S. pyogenes isolates to colonize and infect animals.
EID | Vela A, Villalón P, Sáez-Nieto J, Chacón G, Domínguez L, Fernández-Garayzábal J. Characterization of Streptococcus pyogenes from Animal Clinical Specimens, Spain. Emerg Infect Dis. 2017;23(12):2013-2016. https://doi.org/10.3201/eid2312.151146 |
---|---|
AMA | Vela A, Villalón P, Sáez-Nieto J, et al. Characterization of Streptococcus pyogenes from Animal Clinical Specimens, Spain. Emerging Infectious Diseases. 2017;23(12):2013-2016. doi:10.3201/eid2312.151146. |
APA | Vela, A., Villalón, P., Sáez-Nieto, J., Chacón, G., Domínguez, L., & Fernández-Garayzábal, J. (2017). Characterization of Streptococcus pyogenes from Animal Clinical Specimens, Spain. Emerging Infectious Diseases, 23(12), 2013-2016. https://doi.org/10.3201/eid2312.151146. |
Bourbon Virus in Field-Collected Ticks, Missouri, USA
Bourbon virus (BRBV) was first isolated in 2014 from a resident of Bourbon County, Kansas, USA, who died of the infection. In 2015, an ill Payne County, Oklahoma, resident tested positive for antibodies to BRBV, before fully recovering. We retrospectively tested for BRBV in 39,096 ticks from northwestern Missouri, located 240 km from Bourbon County, Kansas. We detected BRBV in 3 pools of Amblyomma americanum (L.) ticks: 1 pool of male adults and 2 pools of nymphs. Detection of BRBV in A. americanum, a species that is aggressive, feeds on humans, and is abundant in Kansas and Oklahoma, supports the premise that A. americanum is a vector of BRBV to humans. BRBV has not been detected in nonhuman vertebrates, and its natural history remains largely unknown.
EID | Savage HM, Burkhalter KL, Godsey MS, Panella NA, Ashley DC, Nicholson WL, et al. Bourbon Virus in Field-Collected Ticks, Missouri, USA. Emerg Infect Dis. 2017;23(12):2017-2022. https://doi.org/10.3201/eid2312.170532 |
---|---|
AMA | Savage HM, Burkhalter KL, Godsey MS, et al. Bourbon Virus in Field-Collected Ticks, Missouri, USA. Emerging Infectious Diseases. 2017;23(12):2017-2022. doi:10.3201/eid2312.170532. |
APA | Savage, H. M., Burkhalter, K. L., Godsey, M. S., Panella, N. A., Ashley, D. C., Nicholson, W. L....Lambert, A. J. (2017). Bourbon Virus in Field-Collected Ticks, Missouri, USA. Emerging Infectious Diseases, 23(12), 2017-2022. https://doi.org/10.3201/eid2312.170532. |
High Rate of MCR-1–Producing Escherichia coli and Klebsiella pneumoniae among Pigs, Portugal
The mcr-1 (mobile colistin resistance 1) gene, which encodes phosphoethanolamine transferase, has been recently identified as a source of acquired resistance to polymyxins in Escherichia coli. Using the SuperPolymyxin selective medium, we prospectively screened 100 pigs at 2 farms in Portugal for polymyxin-resistant Enterobacteriaceae and recovered 98 plasmid-mediated MCR-1–producing isolates. Most isolates corresponded to nonclonally related E. coli belonging to many sequence types; we also found 2 Klebsiella pneumoniae sequence types. The mcr-1 gene was carried on IncHI2 or IncP plasmid backbones. Our finding of a high rate of MCR-1 producers on 2 pig farms in Portugal highlights the diffusion of that colistin-resistance determinant at the farm level. The fact that the pigs received colistin as metaphylaxis in their feed during the 6 weeks before sampling suggests selective pressure.
EID | Kieffer N, Aires-de-Sousa M, Nordmann P, Poirel L. High Rate of MCR-1–Producing Escherichia coli and Klebsiella pneumoniae among Pigs, Portugal. Emerg Infect Dis. 2017;23(12):2023-2029. https://doi.org/10.3201/eid2312.170883 |
---|---|
AMA | Kieffer N, Aires-de-Sousa M, Nordmann P, et al. High Rate of MCR-1–Producing Escherichia coli and Klebsiella pneumoniae among Pigs, Portugal. Emerging Infectious Diseases. 2017;23(12):2023-2029. doi:10.3201/eid2312.170883. |
APA | Kieffer, N., Aires-de-Sousa, M., Nordmann, P., & Poirel, L. (2017). High Rate of MCR-1–Producing Escherichia coli and Klebsiella pneumoniae among Pigs, Portugal. Emerging Infectious Diseases, 23(12), 2023-2029. https://doi.org/10.3201/eid2312.170883. |
Historical Review
History of Taenia saginata Tapeworms in Northern Russia
Taenia saginata is the most common species of tapeworm infecting humans. Infection is acquired by eating cysticercus larvae in undercooked beef. A closely related species, T. asiatica, is found in eastern and southeastern Asia. The larvae of T. asiatica develop in viscera of pigs. In northern Russia, there is a third member of this morphologically indistinguishable group. Cysticerci of so-called northern T. saginata are found in cerebral meninges of reindeer, and the unique life cycle is dependent on a native custom of eating raw reindeer brain. We report the winding history of this mysterious tapeworm from the first reports to the present time. In addition, we confirm the position of this parasite as a strain of T. saginata by analyzing a mitochondrial DNA sequence of an archival specimen. The origin of this strain might date back to reindeer domestication and contacts between cattle-herding and reindeer-herding peoples in Asia.
EID | Konyaev SV, Nakao M, Ito A, Lavikainen A. History of Taenia saginata Tapeworms in Northern Russia. Emerg Infect Dis. 2017;23(12):2030-2037. https://doi.org/10.3201/eid2312.162101 |
---|---|
AMA | Konyaev SV, Nakao M, Ito A, et al. History of Taenia saginata Tapeworms in Northern Russia. Emerging Infectious Diseases. 2017;23(12):2030-2037. doi:10.3201/eid2312.162101. |
APA | Konyaev, S. V., Nakao, M., Ito, A., & Lavikainen, A. (2017). History of Taenia saginata Tapeworms in Northern Russia. Emerging Infectious Diseases, 23(12), 2030-2037. https://doi.org/10.3201/eid2312.162101. |
Dispatches
Outbreak of Yellow Fever among Nonhuman Primates, Espirito Santo, Brazil, 2017
In January 2017, a yellow fever outbreak occurred in Espirito Santo, Brazil, where human immunization coverage is low. Histologic, immunohistologic, and PCR examinations were performed for 22 deceased nonhuman New World primates; typical yellow fever features were found in 21. Diagnosis in nonhuman primates prompted early public health response.
EID | Fernandes N, Cunha M, Guerra J, Réssio R, Cirqueira C, Iglezias S, et al. Outbreak of Yellow Fever among Nonhuman Primates, Espirito Santo, Brazil, 2017. Emerg Infect Dis. 2017;23(12):2038-2041. https://doi.org/10.3201/eid2312.170685 |
---|---|
AMA | Fernandes N, Cunha M, Guerra J, et al. Outbreak of Yellow Fever among Nonhuman Primates, Espirito Santo, Brazil, 2017. Emerging Infectious Diseases. 2017;23(12):2038-2041. doi:10.3201/eid2312.170685. |
APA | Fernandes, N., Cunha, M., Guerra, J., Réssio, R., Cirqueira, C., Iglezias, S....Díaz-Delgado, J. (2017). Outbreak of Yellow Fever among Nonhuman Primates, Espirito Santo, Brazil, 2017. Emerging Infectious Diseases, 23(12), 2038-2041. https://doi.org/10.3201/eid2312.170685. |
Mycobacterium ulcerans DNA in Bandicoot Excreta in Buruli Ulcer–Endemic Area, Northern Queensland, Australia
To identify potential reservoirs/vectors of Mycobacterium ulcerans in northern Queensland, Australia, we analyzed environmental samples collected from the Daintree River catchment area, to which Buruli ulcer is endemic, and adjacent coastal lowlands by species-specific PCR. We detected M. ulcerans DNA in soil, mosquitoes, and excreta of bandicoots, which are small terrestrial marsupials.
EID | Röltgen K, Pluschke G, Johnson P, Fyfe J. Mycobacterium ulcerans DNA in Bandicoot Excreta in Buruli Ulcer–Endemic Area, Northern Queensland, Australia. Emerg Infect Dis. 2017;23(12):2042-2045. https://doi.org/10.3201/eid2312.170780 |
---|---|
AMA | Röltgen K, Pluschke G, Johnson P, et al. Mycobacterium ulcerans DNA in Bandicoot Excreta in Buruli Ulcer–Endemic Area, Northern Queensland, Australia. Emerging Infectious Diseases. 2017;23(12):2042-2045. doi:10.3201/eid2312.170780. |
APA | Röltgen, K., Pluschke, G., Johnson, P., & Fyfe, J. (2017). Mycobacterium ulcerans DNA in Bandicoot Excreta in Buruli Ulcer–Endemic Area, Northern Queensland, Australia. Emerging Infectious Diseases, 23(12), 2042-2045. https://doi.org/10.3201/eid2312.170780. |
Avian Influenza A(H7N2) Virus in Human Exposed to Sick Cats, New York, USA, 2016
An outbreak of influenza A(H7N2) virus in cats in a shelter in New York, NY, USA, resulted in zoonotic transmission. Virus isolated from the infected human was closely related to virus isolated from a cat; both were related to low pathogenicity avian influenza A(H7N2) viruses detected in the United States during the early 2000s.
EID | Marinova-Petkova A, Laplante J, Jang Y, Lynch B, Zanders N, Rodriguez M, et al. Avian Influenza A(H7N2) Virus in Human Exposed to Sick Cats, New York, USA, 2016. Emerg Infect Dis. 2017;23(12):2046-2049. https://doi.org/10.3201/eid2312.170798 |
---|---|
AMA | Marinova-Petkova A, Laplante J, Jang Y, et al. Avian Influenza A(H7N2) Virus in Human Exposed to Sick Cats, New York, USA, 2016. Emerging Infectious Diseases. 2017;23(12):2046-2049. doi:10.3201/eid2312.170798. |
APA | Marinova-Petkova, A., Laplante, J., Jang, Y., Lynch, B., Zanders, N., Rodriguez, M....Davis, C. (2017). Avian Influenza A(H7N2) Virus in Human Exposed to Sick Cats, New York, USA, 2016. Emerging Infectious Diseases, 23(12), 2046-2049. https://doi.org/10.3201/eid2312.170798. |
Deaths among Wild Birds during Highly Pathogenic Avian Influenza A(H5N8) Virus Outbreak, the Netherlands
During autumn–winter 2016–2017, highly pathogenic avian influenza A(H5N8) viruses caused mass die-offs among wild birds in the Netherlands. Among the ≈13,600 birds reported dead, most were tufted ducks (Aythya fuligula) and Eurasian wigeons (Anas penelope). Recurrence of avian influenza outbreaks might alter wild bird population dynamics.
EID | Kleyheeg E, Slaterus R, Bodewes R, Rijks JM, Spierenburg M, Beerens N, et al. Deaths among Wild Birds during Highly Pathogenic Avian Influenza A(H5N8) Virus Outbreak, the Netherlands. Emerg Infect Dis. 2017;23(12):2050-2054. https://doi.org/10.3201/eid2312.171086 |
---|---|
AMA | Kleyheeg E, Slaterus R, Bodewes R, et al. Deaths among Wild Birds during Highly Pathogenic Avian Influenza A(H5N8) Virus Outbreak, the Netherlands. Emerging Infectious Diseases. 2017;23(12):2050-2054. doi:10.3201/eid2312.171086. |
APA | Kleyheeg, E., Slaterus, R., Bodewes, R., Rijks, J. M., Spierenburg, M., Beerens, N....van der Jeugd, H. P. (2017). Deaths among Wild Birds during Highly Pathogenic Avian Influenza A(H5N8) Virus Outbreak, the Netherlands. Emerging Infectious Diseases, 23(12), 2050-2054. https://doi.org/10.3201/eid2312.171086. |
Pathogenic Elizabethkingia miricola Infection in Cultured Black-Spotted Frogs, China, 2016
Multiregional outbreaks of meningitis-like disease caused by Elizabethkingia miricola were confirmed in black-spotted frog farms in China in 2016. Whole-genome sequencing revealed that this amphibian E. miricola strain is closely related to human clinical isolates. Our findings indicate that E. miricola can be epizootic and may pose a threat to humans.
EID | Hu R, Yuan J, Meng Y, Wang Z, Gu Z. Pathogenic Elizabethkingia miricola Infection in Cultured Black-Spotted Frogs, China, 2016. Emerg Infect Dis. 2017;23(12):2055-2059. https://doi.org/10.3201/eid2312.170942 |
---|---|
AMA | Hu R, Yuan J, Meng Y, et al. Pathogenic Elizabethkingia miricola Infection in Cultured Black-Spotted Frogs, China, 2016. Emerging Infectious Diseases. 2017;23(12):2055-2059. doi:10.3201/eid2312.170942. |
APA | Hu, R., Yuan, J., Meng, Y., Wang, Z., & Gu, Z. (2017). Pathogenic Elizabethkingia miricola Infection in Cultured Black-Spotted Frogs, China, 2016. Emerging Infectious Diseases, 23(12), 2055-2059. https://doi.org/10.3201/eid2312.170942. |
West Nile Virus Lineage 2 in Horses and Other Animals with Neurologic Disease, South Africa, 2008–2015
During 2008–2015 in South Africa, we conducted West Nile virus surveillance in 1,407 animals with neurologic disease and identified mostly lineage 2 cases in horses (7.4%, 79/1,069), livestock (1.5%, 2/132), and wildlife (0.5%, 1/206); 35% were fatal. Geographic correlation of horse cases with seropositive veterinarians suggests disease in horses can predict risk in humans.
EID | Venter M, Pretorius M, Fuller JA, Botha E, Rakgotho M, Stivaktas V, et al. West Nile Virus Lineage 2 in Horses and Other Animals with Neurologic Disease, South Africa, 2008–2015. Emerg Infect Dis. 2017;23(12):2060-2064. https://doi.org/10.3201/eid2312.162078 |
---|---|
AMA | Venter M, Pretorius M, Fuller JA, et al. West Nile Virus Lineage 2 in Horses and Other Animals with Neurologic Disease, South Africa, 2008–2015. Emerging Infectious Diseases. 2017;23(12):2060-2064. doi:10.3201/eid2312.162078. |
APA | Venter, M., Pretorius, M., Fuller, J. A., Botha, E., Rakgotho, M., Stivaktas, V....Williams, J. (2017). West Nile Virus Lineage 2 in Horses and Other Animals with Neurologic Disease, South Africa, 2008–2015. Emerging Infectious Diseases, 23(12), 2060-2064. https://doi.org/10.3201/eid2312.162078. |
Tick-Borne Encephalitis in Sheep, Romania
Little is known about the occurrence of tick-borne encephalitis in Romania. Sheep are an infection source for humans and are useful sentinels for risk analysis. We demonstrate high antibody prevalence (15.02%) among sheep used as sentinels for this disease in 80% of the tested localities in 5 counties of northwestern Romania.
EID | Salat J, Mihalca AD, Mihaiu M, Modrý D, Ruzek D. Tick-Borne Encephalitis in Sheep, Romania. Emerg Infect Dis. 2017;23(12):2065-2067. https://doi.org/10.3201/eid2312.170166 |
---|---|
AMA | Salat J, Mihalca AD, Mihaiu M, et al. Tick-Borne Encephalitis in Sheep, Romania. Emerging Infectious Diseases. 2017;23(12):2065-2067. doi:10.3201/eid2312.170166. |
APA | Salat, J., Mihalca, A. D., Mihaiu, M., Modrý, D., & Ruzek, D. (2017). Tick-Borne Encephalitis in Sheep, Romania. Emerging Infectious Diseases, 23(12), 2065-2067. https://doi.org/10.3201/eid2312.170166. |
An increase in typhus group rickettsiosis and an expanding geographic range occurred in Texas, USA, over a decade. Because this illness commonly affects children, we retrospectively examined medical records from 2008–2016 at a large Houston-area pediatric hospital and identified 36 cases. The earliest known cases were diagnosed in 2011.
EID | Erickson T, da Silva J, Nolan MS, Marquez L, Munoz FM, Murray KO. Newly Recognized Pediatric Cases of Typhus Group Rickettsiosis, Houston, Texas, USA. Emerg Infect Dis. 2017;23(12):2068-2071. https://doi.org/10.3201/eid2312.170631 |
---|---|
AMA | Erickson T, da Silva J, Nolan MS, et al. Newly Recognized Pediatric Cases of Typhus Group Rickettsiosis, Houston, Texas, USA. Emerging Infectious Diseases. 2017;23(12):2068-2071. doi:10.3201/eid2312.170631. |
APA | Erickson, T., da Silva, J., Nolan, M. S., Marquez, L., Munoz, F. M., & Murray, K. O. (2017). Newly Recognized Pediatric Cases of Typhus Group Rickettsiosis, Houston, Texas, USA. Emerging Infectious Diseases, 23(12), 2068-2071. https://doi.org/10.3201/eid2312.170631. |
Identification of Dermacentor reticulatus Ticks Carrying Rickettsia raoultii on Migrating Jackal, Denmark
From a migrating golden jackal (Canis aureus), we retrieved 21 live male Dermacentor reticulatus ticks, a species not previously reported from wildlife in Denmark. We identified Rickettsia raoultii from 18 (86%) of the ticks. This bacterium is associated with scalp eschar and neck lymphadenopathy after tick bite syndrome among humans.
EID | Klitgaard K, Chriél M, Isbrand A, Jensen TK, Bødker R. Identification of Dermacentor reticulatus Ticks Carrying Rickettsia raoultii on Migrating Jackal, Denmark. Emerg Infect Dis. 2017;23(12):2072-2074. https://doi.org/10.3201/eid2312.170919 |
---|---|
AMA | Klitgaard K, Chriél M, Isbrand A, et al. Identification of Dermacentor reticulatus Ticks Carrying Rickettsia raoultii on Migrating Jackal, Denmark. Emerging Infectious Diseases. 2017;23(12):2072-2074. doi:10.3201/eid2312.170919. |
APA | Klitgaard, K., Chriél, M., Isbrand, A., Jensen, T. K., & Bødker, R. (2017). Identification of Dermacentor reticulatus Ticks Carrying Rickettsia raoultii on Migrating Jackal, Denmark. Emerging Infectious Diseases, 23(12), 2072-2074. https://doi.org/10.3201/eid2312.170919. |
Investigation of Acute Flaccid Paralysis Reported with La Crosse Virus Infection, Ohio, USA, 2008–2014
Infection with La Crosse virus can cause meningoencephalitis, but it is not known to cause acute flaccid paralysis (AFP). During 2008–2014, nine confirmed or probable La Crosse virus disease cases with possible AFP were reported in Ohio, USA. After an epidemiologic and clinical investigation, we determined no patients truly had AFP.
EID | Hennessey MJ, Pastula DM, Machesky K, Fischer M, Lindsey NP, DiOrio M, et al. Investigation of Acute Flaccid Paralysis Reported with La Crosse Virus Infection, Ohio, USA, 2008–2014. Emerg Infect Dis. 2017;23(12):2075-2077. https://doi.org/10.3201/eid2312.170944 |
---|---|
AMA | Hennessey MJ, Pastula DM, Machesky K, et al. Investigation of Acute Flaccid Paralysis Reported with La Crosse Virus Infection, Ohio, USA, 2008–2014. Emerging Infectious Diseases. 2017;23(12):2075-2077. doi:10.3201/eid2312.170944. |
APA | Hennessey, M. J., Pastula, D. M., Machesky, K., Fischer, M., Lindsey, N. P., DiOrio, M....de Fijter, S. (2017). Investigation of Acute Flaccid Paralysis Reported with La Crosse Virus Infection, Ohio, USA, 2008–2014. Emerging Infectious Diseases, 23(12), 2075-2077. https://doi.org/10.3201/eid2312.170944. |
Phylogenetic Characterization of Crimean-Congo Hemorrhagic Fever Virus, Spain
Two cases of Crimean-Congo hemorrhagic fever were reported in Spain during 2016. We obtained the virus from a patient sample and characterized its full genomic sequence. Phylogenetic analysis indicated that the virus corresponds to the African genotype III, which includes viruses previously found in West and South Africa.
EID | Ramírez de Arellano E, Hernández L, Goyanes M, Arsuaga M, Cruz A, Negredo A, et al. Phylogenetic Characterization of Crimean-Congo Hemorrhagic Fever Virus, Spain. Emerg Infect Dis. 2017;23(12):2078-2080. https://doi.org/10.3201/eid2312.171002 |
---|---|
AMA | Ramírez de Arellano E, Hernández L, Goyanes M, et al. Phylogenetic Characterization of Crimean-Congo Hemorrhagic Fever Virus, Spain. Emerging Infectious Diseases. 2017;23(12):2078-2080. doi:10.3201/eid2312.171002. |
APA | Ramírez de Arellano, E., Hernández, L., Goyanes, M., Arsuaga, M., Cruz, A., Negredo, A....Sánchez-Seco, M. (2017). Phylogenetic Characterization of Crimean-Congo Hemorrhagic Fever Virus, Spain. Emerging Infectious Diseases, 23(12), 2078-2080. https://doi.org/10.3201/eid2312.171002. |
Lack of Secondary Transmission of Ebola Virus from Healthcare Worker to 238 Contacts, United Kingdom, December 2014
In December 2014, Ebola virus disease (EVD) was diagnosed in a healthcare worker in the United Kingdom after the worker returned from an Ebola treatment center in Sierra Leone. The worker flew on 2 flights during the early stages of disease. Follow-up of 238 contacts showed no evidence of secondary transmission of Ebola virus.
EID | Crook P, Smith-Palmer A, Maguire H, McCarthy N, Kirkbride H, Court B, et al. Lack of Secondary Transmission of Ebola Virus from Healthcare Worker to 238 Contacts, United Kingdom, December 2014. Emerg Infect Dis. 2017;23(12):2081-2084. https://doi.org/10.3201/eid2312.171100 |
---|---|
AMA | Crook P, Smith-Palmer A, Maguire H, et al. Lack of Secondary Transmission of Ebola Virus from Healthcare Worker to 238 Contacts, United Kingdom, December 2014. Emerging Infectious Diseases. 2017;23(12):2081-2084. doi:10.3201/eid2312.171100. |
APA | Crook, P., Smith-Palmer, A., Maguire, H., McCarthy, N., Kirkbride, H., Court, B....Oliver, I. (2017). Lack of Secondary Transmission of Ebola Virus from Healthcare Worker to 238 Contacts, United Kingdom, December 2014. Emerging Infectious Diseases, 23(12), 2081-2084. https://doi.org/10.3201/eid2312.171100. |
Diagnostic Accuracy of Parameters for Zika and Dengue Virus Infections, Singapore
Singapore experienced its first documented Zika virus outbreak in 2016. We identified clinical and laboratory parameters that increase the probability for Zika or dengue virus infection. Early during the illness, combinations of key parameters obtained through clinical assessment and hematologic tests can help distinguish between these infections.
EID | Ho HJ, Wong J, Mar Kyaw W, Lye DC, Leo Y, Chow A. Diagnostic Accuracy of Parameters for Zika and Dengue Virus Infections, Singapore. Emerg Infect Dis. 2017;23(12):2085-2088. https://doi.org/10.3201/eid2312.171224 |
---|---|
AMA | Ho HJ, Wong J, Mar Kyaw W, et al. Diagnostic Accuracy of Parameters for Zika and Dengue Virus Infections, Singapore. Emerging Infectious Diseases. 2017;23(12):2085-2088. doi:10.3201/eid2312.171224. |
APA | Ho, H. J., Wong, J., Mar Kyaw, W., Lye, D. C., Leo, Y., & Chow, A. (2017). Diagnostic Accuracy of Parameters for Zika and Dengue Virus Infections, Singapore. Emerging Infectious Diseases, 23(12), 2085-2088. https://doi.org/10.3201/eid2312.171224. |
Research Letters
New Avian Hepadnavirus in Palaeognathous Bird, Germany
In 2015, we identified an avian hepatitis B virus associated with hepatitis in a group of captive elegant-crested tinamous (Eudromia elegans) in Germany. The full-length genome of this virus shares <76% sequence identity with other avihepadnaviruses. The virus may therefore be considered a new extant avian hepadnavirus.
EID | Jo WK, Pfankuche VM, Petersen H, Frei S, Kummrow M, Lorenzen S, et al. New Avian Hepadnavirus in Palaeognathous Bird, Germany. Emerg Infect Dis. 2017;23(12):2089-2091. https://doi.org/10.3201/eid2312.161634 |
---|---|
AMA | Jo WK, Pfankuche VM, Petersen H, et al. New Avian Hepadnavirus in Palaeognathous Bird, Germany. Emerging Infectious Diseases. 2017;23(12):2089-2091. doi:10.3201/eid2312.161634. |
APA | Jo, W. K., Pfankuche, V. M., Petersen, H., Frei, S., Kummrow, M., Lorenzen, S....van der Vries, E. (2017). New Avian Hepadnavirus in Palaeognathous Bird, Germany. Emerging Infectious Diseases, 23(12), 2089-2091. https://doi.org/10.3201/eid2312.161634. |
Acute Myopericarditis Associated with Tickborne Rickettsia sibirica mongolitimonae
We report an unusual case of myopericarditis caused by Rickettsia sibirica mongolitimonae. Because of increasing reports of Rickettsia spp. as etiologic agents of acute myopericarditis and the ease and success with which it was treated in the patient reported here, rickettsial infection should be included in the differential diagnosis for myopericarditis.
EID | Revilla-Martí P, Cecilio-Irazola Á, Gayán-Ordás J, Sanjoaquín-Conde I, Linares-Vicente J, Oteo JA. Acute Myopericarditis Associated with Tickborne Rickettsia sibirica mongolitimonae. Emerg Infect Dis. 2017;23(12):2091-2093. https://doi.org/10.3201/eid2312.170293 |
---|---|
AMA | Revilla-Martí P, Cecilio-Irazola Á, Gayán-Ordás J, et al. Acute Myopericarditis Associated with Tickborne Rickettsia sibirica mongolitimonae. Emerging Infectious Diseases. 2017;23(12):2091-2093. doi:10.3201/eid2312.170293. |
APA | Revilla-Martí, P., Cecilio-Irazola, Á., Gayán-Ordás, J., Sanjoaquín-Conde, I., Linares-Vicente, J., & Oteo, J. A. (2017). Acute Myopericarditis Associated with Tickborne Rickettsia sibirica mongolitimonae. Emerging Infectious Diseases, 23(12), 2091-2093. https://doi.org/10.3201/eid2312.170293. |
Enteropathogenic Escherichia coli O80:H2 in Young Calves with Diarrhea, Belgium
Serogroup O80 was detected in 40% of 104 enteropathogenic Escherichia coli isolates from calves with diarrhea from 42 farms in Belgium during 2008‒2015. These isolates harbored the eae-ξ and fliCH2 genes, similar to the O80 attaching-effacing Shigatoxigenic E. coli isolates found in humans in France. This strain might be emerging.
EID | Thiry D, Saulmont M, Takaki S, De Rauw K, Duprez J, Iguchi A, et al. Enteropathogenic Escherichia coli O80:H2 in Young Calves with Diarrhea, Belgium. Emerg Infect Dis. 2017;23(12):2093-2095. https://doi.org/10.3201/eid2312.170450 |
---|---|
AMA | Thiry D, Saulmont M, Takaki S, et al. Enteropathogenic Escherichia coli O80:H2 in Young Calves with Diarrhea, Belgium. Emerging Infectious Diseases. 2017;23(12):2093-2095. doi:10.3201/eid2312.170450. |
APA | Thiry, D., Saulmont, M., Takaki, S., De Rauw, K., Duprez, J., Iguchi, A....Mainil, J. G. (2017). Enteropathogenic Escherichia coli O80:H2 in Young Calves with Diarrhea, Belgium. Emerging Infectious Diseases, 23(12), 2093-2095. https://doi.org/10.3201/eid2312.170450. |
Incentives for Bushmeat Consumption and Importation among West African Immigrants, Minnesota, USA
The knowledge, attitudes, and practices surrounding bushmeat consumption and importation in the United States are not well described. Focus groups of West African persons living in Minnesota, USA, found that perceived risks are low and unlikely to deter consumers. Incentives for importation and consumption were multifactorial in this community.
EID | Walz E, Wilson D, Stauffer JC, Wanduragala D, Stauffer WM, Travis DA, et al. Incentives for Bushmeat Consumption and Importation among West African Immigrants, Minnesota, USA. Emerg Infect Dis. 2017;23(12):2095-2097. https://doi.org/10.3201/eid2312.170563 |
---|---|
AMA | Walz E, Wilson D, Stauffer JC, et al. Incentives for Bushmeat Consumption and Importation among West African Immigrants, Minnesota, USA. Emerging Infectious Diseases. 2017;23(12):2095-2097. doi:10.3201/eid2312.170563. |
APA | Walz, E., Wilson, D., Stauffer, J. C., Wanduragala, D., Stauffer, W. M., Travis, D. A....Alpern, J. D. (2017). Incentives for Bushmeat Consumption and Importation among West African Immigrants, Minnesota, USA. Emerging Infectious Diseases, 23(12), 2095-2097. https://doi.org/10.3201/eid2312.170563. |
Porcine Astrovirus Type 3 in Central Nervous System of Swine with Polioencephalomyelitis
Using next-generation sequencing, we identified and genetically characterized a porcine astrovirus type 3 strain found in tissues from the central nervous system of 1 piglet and 3 sows with neurologic signs and nonsuppurative polioencephalomyelitis. Further studies are needed to understand the potential for cross-species transmission and clinical impact.
EID | Arruda B, Arruda P, Hensch M, Chen Q, Zheng Y, Yang C, et al. Porcine Astrovirus Type 3 in Central Nervous System of Swine with Polioencephalomyelitis. Emerg Infect Dis. 2017;23(12):2097-2100. https://doi.org/10.3201/eid2312.170703 |
---|---|
AMA | Arruda B, Arruda P, Hensch M, et al. Porcine Astrovirus Type 3 in Central Nervous System of Swine with Polioencephalomyelitis. Emerging Infectious Diseases. 2017;23(12):2097-2100. doi:10.3201/eid2312.170703. |
APA | Arruda, B., Arruda, P., Hensch, M., Chen, Q., Zheng, Y., Yang, C....Li, G. (2017). Porcine Astrovirus Type 3 in Central Nervous System of Swine with Polioencephalomyelitis. Emerging Infectious Diseases, 23(12), 2097-2100. https://doi.org/10.3201/eid2312.170703. |
Avian Influenza (H7N9) Viruses Co-circulating among Chickens, Southern China
In April 2017, three avian influenza (H7N9) viruses were isolated from chickens in southern China. Each virus had different insertion points in the cleavage site of the hemagglutinin protein compared to the first identified H7N9 virus. We determined that these viruses were double or triple reassortant viruses.
EID | Wang N, Sun M, Wang W, Ouyang G, Chen Z, Zhang Y, et al. Avian Influenza (H7N9) Viruses Co-circulating among Chickens, Southern China. Emerg Infect Dis. 2017;23(12):2100-2102. https://doi.org/10.3201/eid2312.170782 |
---|---|
AMA | Wang N, Sun M, Wang W, et al. Avian Influenza (H7N9) Viruses Co-circulating among Chickens, Southern China. Emerging Infectious Diseases. 2017;23(12):2100-2102. doi:10.3201/eid2312.170782. |
APA | Wang, N., Sun, M., Wang, W., Ouyang, G., Chen, Z., Zhang, Y....Jiao, P. (2017). Avian Influenza (H7N9) Viruses Co-circulating among Chickens, Southern China. Emerging Infectious Diseases, 23(12), 2100-2102. https://doi.org/10.3201/eid2312.170782. |
Rabies and Distemper Outbreaks in Smallest Ethiopian Wolf Population
Widespread deaths recently devastated the smallest known population of Ethiopian wolves. Of 7 carcasses found, all 3 tested were positive for rabies. Two wolves were subsequently vaccinated for rabies; 1 of these later died from canine distemper. Only 2 of a known population of 13 wolves survived.
EID | Marino J, Sillero-Zubiri C, Deressa A, Bedin E, Bitewa A, Lema F, et al. Rabies and Distemper Outbreaks in Smallest Ethiopian Wolf Population. Emerg Infect Dis. 2017;23(12):2102-2104. https://doi.org/10.3201/eid2312.170893 |
---|---|
AMA | Marino J, Sillero-Zubiri C, Deressa A, et al. Rabies and Distemper Outbreaks in Smallest Ethiopian Wolf Population. Emerging Infectious Diseases. 2017;23(12):2102-2104. doi:10.3201/eid2312.170893. |
APA | Marino, J., Sillero-Zubiri, C., Deressa, A., Bedin, E., Bitewa, A., Lema, F....Fooks, A. R. (2017). Rabies and Distemper Outbreaks in Smallest Ethiopian Wolf Population. Emerging Infectious Diseases, 23(12), 2102-2104. https://doi.org/10.3201/eid2312.170893. |
High Abundance and Genetic Variability of Atypical Porcine Pestivirus in Pigs from Europe and Asia
Atypical porcine pestivirus (APPV) was recently reported to be associated with neurologic disorders in newborn piglets. Investigations of 1,460 serum samples of apparently healthy pigs from different parts of Europe and Asia demonstrate a geographically wide distribution of genetically highly variable APPV and high APPV genome and antibody detection rates.
EID | Postel A, Meyer D, Cagatay G, Feliziani F, De Mia G, Fischer N, et al. High Abundance and Genetic Variability of Atypical Porcine Pestivirus in Pigs from Europe and Asia. Emerg Infect Dis. 2017;23(12):2104-2107. https://doi.org/10.3201/eid2312.170951 |
---|---|
AMA | Postel A, Meyer D, Cagatay G, et al. High Abundance and Genetic Variability of Atypical Porcine Pestivirus in Pigs from Europe and Asia. Emerging Infectious Diseases. 2017;23(12):2104-2107. doi:10.3201/eid2312.170951. |
APA | Postel, A., Meyer, D., Cagatay, G., Feliziani, F., De Mia, G., Fischer, N....Becher, P. (2017). High Abundance and Genetic Variability of Atypical Porcine Pestivirus in Pigs from Europe and Asia. Emerging Infectious Diseases, 23(12), 2104-2107. https://doi.org/10.3201/eid2312.170951. |
Human Case of Streptococcus suis Disease, Ontario, Canada
We report a case of Streptococcus suis human disease in Ontario, Canada, caused by a serotype 2 strain genotypically similar to those commonly isolated from pigs in North America. Initially, the isolate was misidentified as a viridans group Streptococcus. Human S. suis infections may be underdiagnosed in North America.
EID | Gomez-Torres J, Nimir A, Cluett J, Aggarwal A, Elsayed S, Soares D, et al. Human Case of Streptococcus suis Disease, Ontario, Canada. Emerg Infect Dis. 2017;23(12):2107-2109. https://doi.org/10.3201/eid2312.171005 |
---|---|
AMA | Gomez-Torres J, Nimir A, Cluett J, et al. Human Case of Streptococcus suis Disease, Ontario, Canada. Emerging Infectious Diseases. 2017;23(12):2107-2109. doi:10.3201/eid2312.171005. |
APA | Gomez-Torres, J., Nimir, A., Cluett, J., Aggarwal, A., Elsayed, S., Soares, D....Fittipaldi, N. (2017). Human Case of Streptococcus suis Disease, Ontario, Canada. Emerging Infectious Diseases, 23(12), 2107-2109. https://doi.org/10.3201/eid2312.171005. |
Moku Virus in Invasive Asian Hornets, Belgium, 2016
We report the detection of Moku virus in invasive Asian hornets (Vespa velutina nigrithorax) in Belgium. This constitutes an unexpected report of this iflavirus outside Hawaii, USA, where it was recently described in social wasps. Although virulence of Moku virus is unknown, its potential spread raises concern for European honeybee populations.
EID | Garigliany M, Taminiau B, El Agrebi N, Cadar D, Gilliaux G, Hue M, et al. Moku Virus in Invasive Asian Hornets, Belgium, 2016. Emerg Infect Dis. 2017;23(12):2109-2112. https://doi.org/10.3201/eid2312.171080 |
---|---|
AMA | Garigliany M, Taminiau B, El Agrebi N, et al. Moku Virus in Invasive Asian Hornets, Belgium, 2016. Emerging Infectious Diseases. 2017;23(12):2109-2112. doi:10.3201/eid2312.171080. |
APA | Garigliany, M., Taminiau, B., El Agrebi, N., Cadar, D., Gilliaux, G., Hue, M....Saegerman, C. (2017). Moku Virus in Invasive Asian Hornets, Belgium, 2016. Emerging Infectious Diseases, 23(12), 2109-2112. https://doi.org/10.3201/eid2312.171080. |
Angiostrongylus cantonensis DNA in Cerebrospinal Fluid of Persons with Eosinophilic Meningitis, Laos
Definitive identification of Angiostrongylus cantonensis parasites from clinical specimens is difficult. As a result, regional epidemiology and burden are poorly characterized. To ascertain presence of this parasite in patients in Laos with eosinophilic meningitis, we performed quantitative PCRs on 36 cerebrospinal fluid samples; 4 positive samples confirmed the parasite’s presence.
EID | Ming D, Rattanavong S, Bharucha T, Sengvilaipaseuth O, Dubot-Pérès A, Newton PN, et al. Angiostrongylus cantonensis DNA in Cerebrospinal Fluid of Persons with Eosinophilic Meningitis, Laos. Emerg Infect Dis. 2017;23(12):2112-2113. https://doi.org/10.3201/eid2312.171107 |
---|---|
AMA | Ming D, Rattanavong S, Bharucha T, et al. Angiostrongylus cantonensis DNA in Cerebrospinal Fluid of Persons with Eosinophilic Meningitis, Laos. Emerging Infectious Diseases. 2017;23(12):2112-2113. doi:10.3201/eid2312.171107. |
APA | Ming, D., Rattanavong, S., Bharucha, T., Sengvilaipaseuth, O., Dubot-Pérès, A., Newton, P. N....Robinson, M. T. (2017). Angiostrongylus cantonensis DNA in Cerebrospinal Fluid of Persons with Eosinophilic Meningitis, Laos. Emerging Infectious Diseases, 23(12), 2112-2113. https://doi.org/10.3201/eid2312.171107. |
Tool for Eliminating Dog-Mediated Human Rabies through Mass Dog Vaccination Campaigns
The World Health Organization and collaborating agencies have set the goal of eliminating dog-mediated human rabies by 2030. Building on experience with rabies endemic countries, we constructed a user-friendly tool to help public health officials plan the resources needed to achieve this goal through mass vaccination of dogs.
EID | Undurraga EA, Blanton JD, Thumbi S, Mwatondo A, Muturi M, Wallace RM. Tool for Eliminating Dog-Mediated Human Rabies through Mass Dog Vaccination Campaigns. Emerg Infect Dis. 2017;23(12):2114-2116. https://doi.org/10.3201/eid2312.171148 |
---|---|
AMA | Undurraga EA, Blanton JD, Thumbi S, et al. Tool for Eliminating Dog-Mediated Human Rabies through Mass Dog Vaccination Campaigns. Emerging Infectious Diseases. 2017;23(12):2114-2116. doi:10.3201/eid2312.171148. |
APA | Undurraga, E. A., Blanton, J. D., Thumbi, S., Mwatondo, A., Muturi, M., & Wallace, R. M. (2017). Tool for Eliminating Dog-Mediated Human Rabies through Mass Dog Vaccination Campaigns. Emerging Infectious Diseases, 23(12), 2114-2116. https://doi.org/10.3201/eid2312.171148. |
Unexpected Infection with Armillifer Parasites
Visceral pentastomiasis is usually found incidentally during surgery. We describe a case of visceral pentastomiasis discovered during inguinoscrotal hernia surgery for a man from Benin, Africa. Because surgical removal of nymphs is needed for symptomatic patients only, this patient’s asymptomatic pentastomiasis was not treated and he recovered from surgery uneventfully.
EID | Potters I, Desaive C, Van Den Broucke S, Van Esbroeck M, Lynen L. Unexpected Infection with Armillifer Parasites. Emerg Infect Dis. 2017;23(12):2116-2118. https://doi.org/10.3201/eid2312.171189 |
---|---|
AMA | Potters I, Desaive C, Van Den Broucke S, et al. Unexpected Infection with Armillifer Parasites. Emerging Infectious Diseases. 2017;23(12):2116-2118. doi:10.3201/eid2312.171189. |
APA | Potters, I., Desaive, C., Van Den Broucke, S., Van Esbroeck, M., & Lynen, L. (2017). Unexpected Infection with Armillifer Parasites. Emerging Infectious Diseases, 23(12), 2116-2118. https://doi.org/10.3201/eid2312.171189. |
Influenza A(H9N2) Virus, Burkina Faso
We identified influenza A(H9N2) virus G1 lineage in poultry in Burkina Faso. Urgent actions are needed to raise awareness about the risk associated with spread of this zoonotic virus subtype in the area and to construct a strategy for effective prevention and control of influenza caused by this virus.
EID | Zecchin B, Minoungou G, Fusaro A, Moctar S, Ouedraogo-Kaboré A, Schivo A, et al. Influenza A(H9N2) Virus, Burkina Faso. Emerg Infect Dis. 2017;23(12):2118-2119. https://doi.org/10.3201/eid2312.171294 |
---|---|
AMA | Zecchin B, Minoungou G, Fusaro A, et al. Influenza A(H9N2) Virus, Burkina Faso. Emerging Infectious Diseases. 2017;23(12):2118-2119. doi:10.3201/eid2312.171294. |
APA | Zecchin, B., Minoungou, G., Fusaro, A., Moctar, S., Ouedraogo-Kaboré, A., Schivo, A....Monne, I. (2017). Influenza A(H9N2) Virus, Burkina Faso. Emerging Infectious Diseases, 23(12), 2118-2119. https://doi.org/10.3201/eid2312.171294. |
Detection of Zika Virus in April 2013 Patient Samples, Rio de Janeiro, Brazil
We tested 210 dengue virus‒negative samples collected from febrile patients during a dengue virus type 4 outbreak in Rio de Janeiro in April 2013 and found 3 samples positive for Zika virus. Our findings support previously published entomological data suggesting Zika virus was introduced into Brazil during October 2012–May 2013.
EID | Passos SR, Borges dos Santos MA, Cerbino-Neto J, Buonora SN, Souza T, de Oliveira R, et al. Detection of Zika Virus in April 2013 Patient Samples, Rio de Janeiro, Brazil. Emerg Infect Dis. 2017;23(12):2120-2121. https://doi.org/10.3201/eid2312.171375 |
---|---|
AMA | Passos SR, Borges dos Santos MA, Cerbino-Neto J, et al. Detection of Zika Virus in April 2013 Patient Samples, Rio de Janeiro, Brazil. Emerging Infectious Diseases. 2017;23(12):2120-2121. doi:10.3201/eid2312.171375. |
APA | Passos, S. R., Borges dos Santos, M. A., Cerbino-Neto, J., Buonora, S. N., Souza, T., de Oliveira, R....Hökerberg, Y. (2017). Detection of Zika Virus in April 2013 Patient Samples, Rio de Janeiro, Brazil. Emerging Infectious Diseases, 23(12), 2120-2121. https://doi.org/10.3201/eid2312.171375. |
Letters
Wildlife as Source of Human Escherichia coli O157 Infection
EID | Crook B, Senior H Senior. Wildlife as Source of Human Escherichia coli O157 Infection. Emerg Infect Dis. 2017;23(12):2122. https://doi.org/10.3201/eid2312.171210 |
---|---|
AMA | Crook B, Senior H Senior. Wildlife as Source of Human Escherichia coli O157 Infection. Emerging Infectious Diseases. 2017;23(12):2122. doi:10.3201/eid2312.171210. |
APA | Crook, B., & Senior, H., Senior. (2017). Wildlife as Source of Human Escherichia coli O157 Infection. Emerging Infectious Diseases, 23(12), 2122. https://doi.org/10.3201/eid2312.171210. |
Books and Media
The Next Pandemic: On the Front Lines Against Humankind’s Gravest Dangers
EID | Hanage WP. The Next Pandemic: On the Front Lines Against Humankind’s Gravest Dangers. Emerg Infect Dis. 2017;23(12):2123. https://doi.org/10.3201/eid2312.171137 |
---|---|
AMA | Hanage WP. The Next Pandemic: On the Front Lines Against Humankind’s Gravest Dangers. Emerging Infectious Diseases. 2017;23(12):2123. doi:10.3201/eid2312.171137. |
APA | Hanage, W. P. (2017). The Next Pandemic: On the Front Lines Against Humankind’s Gravest Dangers. Emerging Infectious Diseases, 23(12), 2123. https://doi.org/10.3201/eid2312.171137. |
Etymologia
Etymologia: Taenia saginata
EID | Henry R. Etymologia: Taenia saginata. Emerg Infect Dis. 2017;23(12):2029. https://doi.org/10.3201/eid2312.et2312 |
---|---|
AMA | Henry R. Etymologia: Taenia saginata. Emerging Infectious Diseases. 2017;23(12):2029. doi:10.3201/eid2312.et2312. |
APA | Henry, R. (2017). Etymologia: Taenia saginata. Emerging Infectious Diseases, 23(12), 2029. https://doi.org/10.3201/eid2312.et2312. |
About the Cover
“Everything within a Circle Is One Thing”
EID | Breedlove B. “Everything within a Circle Is One Thing”. Emerg Infect Dis. 2017;23(12):2124-2125. https://doi.org/10.3201/eid2312.ac2312 |
---|---|
AMA | Breedlove B. “Everything within a Circle Is One Thing”. Emerging Infectious Diseases. 2017;23(12):2124-2125. doi:10.3201/eid2312.ac2312. |
APA | Breedlove, B. (2017). “Everything within a Circle Is One Thing”. Emerging Infectious Diseases, 23(12), 2124-2125. https://doi.org/10.3201/eid2312.ac2312. |