Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 23, Number 3—March 2017
Research

Pulmonary Nontuberculous Mycobacteria–Associated Deaths, Ontario, Canada, 2001–2013

Theodore K. MarrasComments to Author , Michael A. Campitelli, Hong Lu, Hannah Chung, Sarah K. Brode, Alex Marchand-Austin, Kevin L. Winthrop, Andrea S. Gershon, Jeffrey C. Kwong1, and Frances B. Jamieson1
Author affiliations: Mount Sinai Hospital, Toronto, Ontario, Canada (T.K. Marras, S.K. Brode); University of Toronto, Toronto (T.K. Marras, S.K. Brode, A.S. Gershon, J.C. Kwong, F.B. Jamieson); University Health Network, Toronto (T.K. Marras, S.K. Brode, J.C. Kwong); Institute for Clinical Evaluative Sciences, Toronto (M.A. Campitelli, H. Lu, H. Chung, A.S. Gershon, J.C. Kwong); West Park Healthcare Centre, Toronto (S.K. Brode); Public Health Ontario, Toronto (A. Marchand-Austin, J.C. Kwong, F.B. Jamieson); Oregon Health and Science University, Portland, Oregon, USA (K.L. Winthrop); Sunnybrook Health Sciences Centre, Toronto (A.S. Gershon)

Main Article

Table 5

Multivariable associations between baseline clinical variables and death among all patients with incident NTM pulmonary disease, Ontario, Canada, 2001–2013*

Variable Value, n = 9,681 Adjusted† HR (95% CI) p value
Male sex, no. (%) 49.1 1.47 (1.38–1.57) <0.0001
Median age, y (IQR)
70 (58–78)
1.05 (1.05–1.05)
<0.0001
Income quintile,‡ %
1 (lowest; reference) 26.7
2 21.7 0.93 (0.86–1.02) 0.1267
3 18.0 0.90 (0.82–0.99) 0.0332
4 16.3 0.86 (0.78–0.95) 0.0024
5
17.1
0.82 (0.74–0.90)
<0.0001
Residential setting,§ %
Urban (reference) 89.5
Suburban 7.8 0.98 (0.87–1.10) 0.7091
Rural
2.7
1.04 (0.87–1.25)
0.6783
ACG number,¶ %
0–5 (reference) 11.9
6–10 42.5 1.21 (1.05–1.39) 0.0084
>11
45.6
1.44 (1.25–1.66)
<0.0001
Underlying condition, %
Asthma 35.1 0.88 (0.82–0.94) 0.0003
COPD 51.3 1.38 (1.29–1.48) <0.0001
Diabetes 19.9 1.05 (0.97–1.13) 0.2505
Rheumatoid arthritis 3.5 1.19 (1.01–1.39) 0.0339
Chronic kidney disease 8.1 1.40 (1.27–1.55) <0.0001
GERD 17.3 0.93 (0.86–1.01) 0.0832
Bronchiectasis 14.2 0.76 (0.69–0.84) <0.0001
Interstitial lung disease 8.1 1.51 (1.37–1.68) <0.0001
Lung cancer 8.0 3.03 (2.78–3.32) <0.0001
HIV infection 1.8 3.56 (2.81–4.49) <0.0001
Cystic fibrosis 1.0 1.95 (1.37–2.77) 0.0002
Solid organ transplant 1.4 1.06 (0.81–1.38) 0.6849
Bone marrow transplant 0.6 2.77 (1.93–3.97) <0.0001
Prior tuberculosis
1.8
0.66 (0.50–0.87)
0.0037
Hospitalizations,# mean ± SD 0.41 ± 0.93 1.09 (1.05–1.14) <0.0001
Emergency department visits,# mean ± SD
0.93 ± 1.24
1.16 (1.13–1.20)
<0.0001
NTM species, %
MAC (reference) 65.3
M. xenopi 23.4 1.22 (1.13–1.31) <0.0001
M. fortuitum 2.7 1.02 (0.84–1.23) 0.8538
M. abscessus 2.5 0.98 (0.78–1.24) 0.8841
M. kansasii 1.6 1.25 (0.99–1.57) 0.0636
All other species 4.4 0.94 (0.80–1.10) 0.4306

*Multivariable Cox proportional hazards model including all 9,681 registered Ontario residents with incident NTM pulmonary disease (>1 positive sputum sample for the same species or 1 positive bronchoscopic or biopsy specimen). No matching required for this analysis, and so all covariates of interest were assessed. ACG, Adjusted Clinical Group; COPD, chronic obstructive pulmonary disease; GERD, gastresophageal reflux disease; IQR, interquartile range; MAC, mycobacterium avium complex; NTM, nontuberculous mycobacteria. Dashes indicate reference level for the variable (values not calculated).
†Adjusted for sex, age, income quintile, location, ACG case mix system, baseline underlying conditions (asthma, COPD, diabetes, HIV, rheumatoid arthritis, chronic kidney disease, GERD, bronchiectasis, interstitial lung disease, cystic fibrosis, prior tuberculosis, lung cancer, solid organ transplantation or bone marrow transplantation), health use (number of hospitalizations and emergency department visits in year before index date), and NTM disease diagnosis during follow-up as time-varying covariate (for NTM isolation group only).
‡Totals do not add to 100% because of missing income data in 0.4% of patients
§Residential setting characterized by Rural Index of Ontario (19).
¶Number of ACG diagnoses using the ACG case mix system (16).
#Number of events in the year before entry.

Main Article

References
  1. Marras  TK, Mendelson  D, Marchand-Austin  A, May  K, Jamieson  FB. Pulmonary nontuberculous mycobacterial disease, Ontario, Canada, 1998-2010. Emerg Infect Dis. 2013;19:188991. DOIPubMedGoogle Scholar
  2. Henkle  E, Hedberg  K, Schafer  S, Novosad  S, Winthrop  KL. Population-based incidence of pulmonary nontuberculous mycobacterial disease in Oregon 2007 to 2012. Ann Am Thorac Soc. 2015;12:6427. DOIPubMedGoogle Scholar
  3. Adjemian  J, Olivier  KN, Seitz  AE, Holland  SM, Prevots  DR. Prevalence of nontuberculous mycobacterial lung disease in U.S. Medicare beneficiaries. Am J Respir Crit Care Med. 2012;185:8816. DOIPubMedGoogle Scholar
  4. Mehta  M, Marras  TK. Impaired health-related quality of life in pulmonary nontuberculous mycobacterial disease. Respir Med. 2011;105:171825. DOIPubMedGoogle Scholar
  5. Griffith  DE, Aksamit  T, Brown-Elliott  BA, Catanzaro  A, Daley  C, Gordin  F, et al.; ATS Mycobacterial Diseases Subcommittee; American Thoracic Society; Infectious Disease Society of America. An official ATS/IDSA statement: diagnosis, treatment, and prevention of nontuberculous mycobacterial diseases. [Erratum in: Am J Respir Crit Care Med. 2007;175:744–5]. Am J Respir Crit Care Med. 2007;175:367416. DOIPubMedGoogle Scholar
  6. Leber  A, Marras  TK. The cost of medical management of pulmonary nontuberculous mycobacterial disease in Ontario, Canada. Eur Respir J. 2011;37:115865. DOIPubMedGoogle Scholar
  7. Hayashi  M, Takayanagi  N, Kanauchi  T, Miyahara  Y, Yanagisawa  T, Sugita  Y. Prognostic factors of 634 HIV-negative patients with Mycobacterium avium complex lung disease. Am J Respir Crit Care Med. 2012;185:57583. DOIPubMedGoogle Scholar
  8. Ito  Y, Hirai  T, Maekawa  K, Fujita  K, Imai  S, Tatsumi  S, et al. Predictors of 5-year mortality in pulmonary Mycobacterium avium-intracellulare complex disease. Int J Tuberc Lung Dis. 2012;16:40814. DOIPubMedGoogle Scholar
  9. Kotilainen  H, Valtonen  V, Tukiainen  P, Poussa  T, Eskola  J, Järvinen  A. Prognostic value of American Thoracic Society criteria for non-tuberculous mycobacterial disease: a retrospective analysis of 120 cases with four years of follow-up. Scand J Infect Dis. 2013;45:194202. DOIPubMedGoogle Scholar
  10. Fleshner  M, Olivier  KN, Shaw  PA, Adjemian  J, Strollo  S, Claypool  RJ, et al. Mortality among patients with pulmonary non-tuberculous mycobacteria disease. Int J Tuberc Lung Dis. 2016;20:5827. DOIPubMedGoogle Scholar
  11. Andréjak  C, Thomsen  , Johansen  IS, Riis  A, Benfield  TL, Duhaut  P, et al. Nontuberculous pulmonary mycobacteriosis in Denmark: incidence and prognostic factors. Am J Respir Crit Care Med. 2010;181:51421. DOIPubMedGoogle Scholar
  12. Prevots  DR, Marras  TK. Epidemiology of human pulmonary infection with nontuberculous mycobacteria: a review. Clin Chest Med. 2015;36:1334. DOIPubMedGoogle Scholar
  13. Brode  SK, Jamieson  FB, Ng  R, Campitelli  MA, Kwong  JC, Paterson  JM, et al. Risk of mycobacterial infections associated with rheumatoid arthritis in Ontario, Canada. Chest. 2014;146:56372. DOIPubMedGoogle Scholar
  14. D’Agostino  RB Jr. Propensity score methods for bias reduction in the comparison of a treatment to a non-randomized control group. Stat Med. 1998;17:226581. DOIPubMedGoogle Scholar
  15. Austin  PC. Optimal caliper widths for propensity-score matching when estimating differences in means and differences in proportions in observational studies. Pharm Stat. 2011;10:15061. DOIPubMedGoogle Scholar
  16. Reid  RJ, MacWilliam  L, Verhulst  L, Roos  N, Atkinson  M. Performance of the ACG case-mix system in two Canadian provinces. Med Care. 2001;39:8699. DOIPubMedGoogle Scholar
  17. Austin  PC, Grootendorst  P, Anderson  GM. A comparison of the ability of different propensity score models to balance measured variables between treated and untreated subjects: a Monte Carlo study. Stat Med. 2007;26:73453. DOIPubMedGoogle Scholar
  18. Hosmer  DW, Lemeshow  S, Sturdivant  RX. Model building strategies and methods for logistic regression. In: Applied logistic regression. 3rd ed. Hoboken (NJ): John Wiley & Sons; 2013. p. 89–152.
  19. Kralj  B. Measuring “rurality” for purposes of health-care planning: an empirical measure for Ontario. Ontario Medical Review. 2000;67:33–42.
  20. Prevots  DR, Shaw  PA, Strickland  D, Jackson  LA, Raebel  MA, Blosky  MA, et al. Nontuberculous mycobacterial lung disease prevalence at four integrated health care delivery systems. Am J Respir Crit Care Med. 2010;182:9706. DOIPubMedGoogle Scholar
  21. Carrillo  MC, Patsios  D, Wagnetz  U, Jamieson  F, Marras  TK. Comparison of the spectrum of radiologic and clinical manifestations of pulmonary disease caused by Mycobacterium avium complex and Mycobacterium xenopi. Can Assoc Radiol J. 2014;65:20713. DOIPubMedGoogle Scholar
  22. de Mello  KG, Mello  FC, Borga  L, Rolla  V, Duarte  RS, Sampaio  EP, et al. Clinical and therapeutic features of pulmonary nontuberculous mycobacterial disease, Brazil, 1993-2011. Emerg Infect Dis. 2013;19:3939.PubMedGoogle Scholar
  23. Winthrop  KL, Baxter  R, Liu  L, McFarland  B, Austin  D, Varley  C, et al. The reliability of diagnostic coding and laboratory data to identify tuberculosis and nontuberculous mycobacterial disease among rheumatoid arthritis patients using anti-tumor necrosis factor therapy. Pharmacoepidemiol Drug Saf. 2011;20:22935. DOIPubMedGoogle Scholar
  24. Marras  TK, Mehta  M, Chedore  P, May  K, Al Houqani  M, Jamieson  F. Nontuberculous mycobacterial lung infections in Ontario, Canada: clinical and microbiological characteristics. Lung. 2010;188:28999. DOIPubMedGoogle Scholar
  25. Feinstein  AR, Sosin  DM, Wells  CK. The Will Rogers phenomenon. Stage migration and new diagnostic techniques as a source of misleading statistics for survival in cancer. N Engl J Med. 1985;312:16048. DOIPubMedGoogle Scholar

Main Article

1These authors contributed equally to this article.

Page created: February 17, 2017
Page updated: February 17, 2017
Page reviewed: February 17, 2017
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.
file_external