Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 23, Number 5—May 2017
Research

Population Genomics of Legionella longbeachae and Hidden Complexities of Infection Source Attribution

Rodrigo Bacigalupe, Diane Lindsay, Giles Edwards, and J. Ross FitzgeraldComments to Author 
Author affiliations: The Roslin Institute, University of Edinburgh, Midlothian, Scotland, UK (R. Bacigalupe, J.R. Fitzgerald); Glasgow Royal Infirmary, Glasgow, Scotland, UK (D. Lindsay, G. Edwards)

Main Article

Figure 3

Legionella longbeachae plasmid analysis: contigs networks reconstructions for 6 representative L. longbeachae types of plasmid content. The networks of the contigs representing the main chromosome and plasmids comprising the genome obtained by using PLACNET (38), a program enabling reconstruction of plasmids from whole-genome sequence datasets. The sizes of the contig nodes (in gray) are proportional to their lengths; continuous lines correspond to scaffold links. Dashed lines represent BLAST (h

Figure 3. Legionella longbeachae plasmid analysis: contigs networks reconstructions for 6 representative L. longbeachae types of plasmid content. The networks of the contigs representing the main chromosome and plasmids comprising the genome obtained by using PLACNET (38), a program enabling reconstruction of plasmids from whole-genome sequence datasets. The sizes of the contig nodes (in gray) are proportional to their lengths; continuous lines correspond to scaffold links. Dashed lines represent BLAST (https://blast.ncbi.nlm.nih.gov/Blast.cgi) hits to the L. longbeachae (blue) or L. pneumophila (red) strains; intensity of the line is proportional to the hit (white indicates low, black indicates high). Green lines correspond to plasmid contigs. Background colors indicate species relatedness for the main chromosome and plasmids (blue for L. longbeachae, red for L. pneumophila, pink for a combination of both, and yellow for previously unidentified genomic content).

Main Article

References
  1. Fields  BS, Benson  RF, Besser  RE. Legionella and Legionnaires’ disease: 25 years of investigation. Clin Microbiol Rev. 2002;15:50626. DOIPubMedGoogle Scholar
  2. European Centre for Disease Prevention and Control. Surveillance report. Legionnaires’ disease in Europe, 2010. 2012 [cited 2016 Jul 9]. http://ecdc.europa.eu/en/publications/publications/sur-legionnaires-disease-surveillance-2010.pdf
  3. Joseph  CA, Ricketts  KD; European Working Group for Legionella Infections. Legionnaires disease in Europe 2007-2008. Euro Surveill. 2010;15:19493.PubMedGoogle Scholar
  4. Marston  BJ, Lipman  HB, Breiman  RF. Surveillance for Legionnaires’ disease. Risk factors for morbidity and mortality. Arch Intern Med. 1994;154:241722. DOIPubMedGoogle Scholar
  5. Li  JS, O’Brien  ED, Guest  C. A review of national legionellosis surveillance in Australia, 1991 to 2000. Commun Dis Intell Q Rep. 2002;26:4618.PubMedGoogle Scholar
  6. Cramp  GJ, Harte  D, Douglas  NM, Graham  F, Schousboe  M, Sykes  K. An outbreak of Pontiac fever due to Legionella longbeachae serogroup 2 found in potting mix in a horticultural nursery in New Zealand. Epidemiol Infect. 2010;138:1520. DOIPubMedGoogle Scholar
  7. Whiley  H, Bentham  R. Legionella longbeachae and legionellosis. Emerg Infect Dis. 2011;17:57983. DOIPubMedGoogle Scholar
  8. Yu  VL, Plouffe  JF, Pastoris  MC, Stout  JE, Schousboe  M, Widmer  A, et al. Distribution of Legionella species and serogroups isolated by culture in patients with sporadic community-acquired legionellosis: an international collaborative survey. J Infect Dis. 2002;186:1278. DOIPubMedGoogle Scholar
  9. García  C, Ugalde  E, Campo  AB, Miñambres  E, Kovács  N. Fatal case of community-acquired pneumonia caused by Legionella longbeachae in a patient with systemic lupus erythematosus. Eur J Clin Microbiol Infect Dis. 2004;23:1168. DOIPubMedGoogle Scholar
  10. den Boer  JW, Yzerman  EPF, Jansen  R, Bruin  JP, Verhoef  LPB, Neve  G, et al. Legionnaires’ disease and gardening. Clin Microbiol Infect. 2007;13:8891. DOIPubMedGoogle Scholar
  11. Potts  A, Donaghy  M, Marley  M, Othieno  R, Stevenson  J, Hyland  J, et al. Cluster of Legionnaires disease cases caused by Legionella longbeachae serogroup 1, Scotland, August to September 2013. Euro Surveill. 2013;18:20656. DOIPubMedGoogle Scholar
  12. Lindsay  DSJ, Brown  AW, Brown  DJ, Pravinkumar  SJ, Anderson  E, Edwards  GF. Legionella longbeachae serogroup 1 infections linked to potting compost. J Med Microbiol. 2012;61:21822. DOIPubMedGoogle Scholar
  13. Steele  TW, Lanser  J, Sangster  N. Isolation of Legionella longbeachae serogroup 1 from potting mixes. Appl Environ Microbiol. 1990;56:4953.PubMedGoogle Scholar
  14. Koide  M, Arakaki  N, Saito  A. Distribution of Legionella longbeachae and other legionellae in Japanese potting soils. J Infect Chemother. 2001;7:2247. DOIPubMedGoogle Scholar
  15. Reuter  S, Harrison  TG, Köser  CU, Ellington  MJ, Smith  GP, Parkhill  J, et al. A pilot study of rapid whole-genome sequencing for the investigation of a Legionella outbreak. BMJ Open. 2013;3:e002175. DOIPubMedGoogle Scholar
  16. Rao  C, Benhabib  H, Ensminger  AW. Phylogenetic reconstruction of the Legionella pneumophila Philadelphia-1 laboratory strains through comparative genomics. PLoS One. 2013;8:e64129. DOIPubMedGoogle Scholar
  17. Cazalet  C, Gomez-Valero  L, Rusniok  C, Lomma  M, Dervins-Ravault  D, Newton  HJ, et al. Analysis of the Legionella longbeachae genome and transcriptome uncovers unique strategies to cause Legionnaires’ disease. PLoS Genet. 2010;6:e1000851. DOIPubMedGoogle Scholar
  18. Kozak  NA, Buss  M, Lucas  CE, Frace  M, Govil  D, Travis  T, et al. Virulence factors encoded by Legionella longbeachae identified on the basis of the genome sequence analysis of clinical isolate D-4968. J Bacteriol. 2010;192:103044. DOIPubMedGoogle Scholar
  19. Gomez-Valero  L, Rusniok  C, Jarraud  S, Vacherie  B, Rouy  Z, Barbe  V, et al. Extensive recombination events and horizontal gene transfer shaped the Legionella pneumophila genomes. BMC Genomics. 2011;12:536. DOIPubMedGoogle Scholar
  20. Ratcliff  RM, Lanser  JA, Manning  PA, Heuzenroeder  MW. Sequence-based classification scheme for the genus Legionella targeting the mip gene. J Clin Microbiol. 1998;36:15607.PubMedGoogle Scholar
  21. Fallon  RJ, Abraham  WH. Experience with heat-killed antigens of L. longbeachae serogroups 1 and 2, and L. jordanis in the indirect fluorescence antibody test. Zentralbl Bakteriol Mikrobiol Hyg A. 1983;255:814.PubMedGoogle Scholar
  22. Babraham Bioinformatics. FastQC. 2010 [cited 2016 Jul 9]. http://www.bioinformatics.babraham.ac.uk/projects/fastqc
  23. Martin  M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.journal. 2011;17:10–12.
  24. GitHub, Inc. wgsim Read Simulator [cited 2016 Jul 9]. https://github.com/lh3/wgsim
  25. Cole  JR, Wang  Q, Fish  JA, Chai  B, McGarrell  DM, Sun  Y, et al. Ribosomal Database Project: data and tools for high throughput rRNA analysis. Nucleic Acids Res. 2014;42(D1):D63342. DOIPubMedGoogle Scholar
  26. Kim  M, Oh  HS, Park  SC, Chun  J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol. 2014;64:34651. DOIPubMedGoogle Scholar
  27. Health Protection Scotland. Surveillance report: legionellosis in Scotland 2013–2014. 2015 Sep 1 [cited 2015 Aug 15]. http://www.hps.scot.nhs.uk/resp/wrdetail.aspx?id=65135&wrtype=6
  28. van der Mee-Marquet  N, Domelier  AS, Arnault  L, Bloc  D, Laudat  P, Hartemann  P, et al. Legionella anisa, a possible indicator of water contamination by Legionella pneumophila. J Clin Microbiol. 2006;44:569. DOIPubMedGoogle Scholar
  29. Svarrer  CW, Uldum  SA. The occurrence of Legionella species other than Legionella pneumophila in clinical and environmental samples in Denmark identified by mip gene sequencing and matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Clin Microbiol Infect. 2012;18:10049. DOIPubMedGoogle Scholar
  30. Underwood  AP, Jones  G, Mentasti  M, Fry  NK, Harrison  TG. Comparison of the Legionella pneumophila population structure as determined by sequence-based typing and whole genome sequencing. BMC Microbiol. 2013;13:302. DOIPubMedGoogle Scholar
  31. Huson  DH, Bryant  D. Application of phylogenetic networks in evolutionary studies. Mol Biol Evol. 2006;23:25467. DOIPubMedGoogle Scholar
  32. Bruen  TC, Philippe  H, Bryant  D. A simple and robust statistical test for detecting the presence of recombination. Genetics. 2006;172:266581. DOIPubMedGoogle Scholar
  33. Marttinen  P, Hanage  WP, Croucher  NJ, Connor  TR, Harris  SR, Bentley  SD, et al. Detection of recombination events in bacterial genomes from large population samples. Nucleic Acids Res. 2012;40:e6. DOIPubMedGoogle Scholar
  34. de Been  M, van Schaik  W, Cheng  L, Corander  J, Willems  RJ. Recent recombination events in the core genome are associated with adaptive evolution in Enterococcus faecium. Genome Biol Evol. 2013;5:152435. DOIPubMedGoogle Scholar
  35. Didelot  X, Wilson  DJ. ClonalFrameML: efficient inference of recombination in whole bacterial genomes. PLOS Comput Biol. 2015;11:e1004041. DOIPubMedGoogle Scholar
  36. Coscollá  M, Comas  I, González-Candelas  F. Quantifying nonvertical inheritance in the evolution of Legionella pneumophila. Mol Biol Evol. 2011;28:9851001. DOIPubMedGoogle Scholar
  37. Sánchez-Busó  L, Comas  I, Jorques  G, González-Candelas  F. Recombination drives genome evolution in outbreak-related Legionella pneumophila isolates. Nat Genet. 2014;46:120511. DOIPubMedGoogle Scholar
  38. Lanza  VF, de Toro  M, Garcillán-Barcia  MP, Mora  A, Blanco  J, Coque  TM, et al. Plasmid flux in Escherichia coli ST131 sublineages, analyzed by plasmid constellation network (PLACNET), a new method for plasmid reconstruction from whole genome sequences. PLoS Genet. 2014;10:e1004766. DOIPubMedGoogle Scholar
  39. Cazalet  C, Rusniok  C, Brüggemann  H, Zidane  N, Magnier  A, Ma  L, et al. Evidence in the Legionella pneumophila genome for exploitation of host cell functions and high genome plasticity. Nat Genet. 2004;36:116573. DOIPubMedGoogle Scholar

Main Article

Page created: April 14, 2017
Page updated: April 14, 2017
Page reviewed: April 14, 2017
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.
file_external