Volume 23, Number 6—June 2017
Research Letter
Tick-Borne Encephalitis Virus in Ticks and Roe Deer, the Netherlands
Abstract
We report the presence of tick-borne encephalitis virus (TBEV) in the Netherlands. Serologic screening of roe deer found TBEV-neutralizing antibodies with a seroprevalence of 2%, and TBEV RNA was detected in 2 ticks from the same location. Enhanced surveillance and awareness among medical professionals has led to the identification of autochthonous cases.
Tick-borne encephalitis virus (TBEV) can infect humans, causing febrile illness; neurologic complications include encephalitis (1). TBEV is transmitted through bites of infected ticks to many animals, including deer, which serve as feeding hosts for ticks (2,3). Expansion of TBEV subtypes has been reported (4). Reports of TBEV-neutralizing antibodies in wildlife and cattle in Belgium prompted us to reinvestigate the presence of TBEV in the Netherlands (5,6).
During January–September 2010, hunters collected 297 blood samples from roe deer (Capreolus capreolus) from locations across the Netherlands. We used a commercial ELISA to detect TBEV-reactive antibodies in roe deer serum samples. Serologic screening of all 297 samples by ELISA yielded 6 positive and 8 borderline results. All positive, 7 borderline, and 3 negative serum samples were confirmed by testing in a TBEV serum neutralization test (SNT), with the Neudörfl strain as the accepted prototype TBEV-EU, formerly called central European encephalitis virus (5). Five of 6 ELISA positive samples and 1 of 7 borderline samples were confirmed positive by SNT. Five of the 6 SNT-confirmed roe deer were shot at or near a popular recreation area, the National Park Sallandse Heuvelrug (Figure, panel A).
In response to the serologic findings, we collected 1,160 nymph and 300 adult Ixodes ricinus ticks by blanket dragging in 7 locations at the national park in September 2015. We extracted RNA from pools of 5 nymphs or 2 adults (7) and tested for flavivirus by using a reverse transcription quantitative PCR. We detected flavivirus RNA in 1 nymph pool and 1 pool of adult female ticks.
To obtain sequences of the 2 reverse transcription quantitative PCR–positive samples, we used primers and protocols as described (8). Both sequences obtained from the tick pools were identical. The sequences obtained in this study were designated TBEV-NL and clustered within the TBEV-EU subtype complex (Figure, panel B), with a 91% sequence identity with the currently known TBEV-EU sequences.
TBEV-EU RNA in 2 pools of ticks collected through surveillance in 1 national park confirms the presence of TBEV-EU in the Netherlands. Serologic evidence that roe deer from the same location had been infected with a flavivirus, most probably a TBEV, 5 years before the detection of TBEV RNA in ticks suggests that TBEV has been endemic to the Netherlands for at least 5 years.
The concentration of serologically positive roe deer is striking and remains unexplained. One explanation could be that this area has dense beech tree coverage, and beechnuts are a major food source for roe deer and the bank vole (Myodes glareolus). These host species play a pivotal role in the TBEV enzootic cycle; a habitat suitable for both may have enhanced the local establishment and spread of TBEV. In addition, the finding of a serologically positive roe deer in a southern province of the Netherlands (Figure, panel A), also known for the presence of beech trees, suggests that TBEV is distributed more widely within the Netherlands.
Dissemination of information about the occurrence of TBEV in ticks and wildlife is needed for medical professionals and the general public. In response to our findings, 2 autochthonous TBEV infections were reported in the Netherlands (9,10). At least 1 of these autochthonous cases was infected with a TBEV strain showing 99% homology with the Neudörfl strain, suggesting the presence of multiple TBEV-EU strains in the Netherlands. Our findings indicate that clinicians should be aware of the possibility for TBEV infection in humans in the Netherlands.
Ms. Jahfari is a PhD candidate at the Dutch National Institute for Public Health and the Environment (RIVM) and Erasmus Medical Center. Her primary research interest is tickborne diseases.
Acknowledgments
We thank Fedor Gassner, Gilian van Duijvendijk , Ryanne Jaarsma, Aleksandra Krawczyk, and Miriam Maas for performing fieldwork; Daan Vreugdenhil and Tom Klomphaar for access to the nature reserves; Natashja Buijs, Ewa Frazer, Najima Lamkaraf, and Sophie Lamoral for technical support in the laboratory; and Marion Koopmans for critically reading this manuscript.
This study was supported by the Netherlands Ministry of Health, Welfare, and Sport and performed under the frame of EurNegVec Cost Action TD1303. The collection of roe deer sera in 2010 was financed by the Netherlands Ministry of Economic Affairs (former LNV; verplichtingnummer 1400004212).
References
- Lindquist L, Vapalahti O. Tick-borne encephalitis. Lancet. 2008;371:1861–71. DOIPubMedGoogle Scholar
- Bakhvalova VN, Dobrotvorsky AK, Panov VV, Matveeva VA, Tkachev SE, Morozova OV. Natural tick-borne encephalitis virus infection among wild small mammals in the southeastern part of western Siberia, Russia. Vector Borne Zoonotic Dis. 2006;6:32–41. DOIPubMedGoogle Scholar
- Gerth HJ, Grimshandl D, Stage B, Döller G, Kunz C. Roe deer as sentinels for endemicity of tick-borne encephalitis virus. Epidemiol Infect. 1995;115:355–65. DOIPubMedGoogle Scholar
- Donoso Mantke O, Schädler R, Niedrig M. A survey on cases of tick-borne encephalitis in European countries. Euro Surveill. 2008;13:18848.PubMedGoogle Scholar
- Roelandt S, Suin V, Van der Stede Y, Lamoral S, Marche S, Tignon M, et al. First TBEV serological screening in Flemish wild boar. Infect Ecol Epidemiol. 2016;6:31099. DOIPubMedGoogle Scholar
- Roelandt S, Suin V, Riocreux F, Lamoral S, Van der Heyden S, Van der Stede Y, et al. Autochthonous tick-borne encephalitis virus-seropositive cattle in Belgium: a risk-based targeted serological survey. Vector Borne Zoonotic Dis. 2014;14:640–7. DOIPubMedGoogle Scholar
- Klaus C, Hoffmann B, Hering U, Mielke B, Sachse K, Beer M, et al. Tick-borne encephalitis (TBE) virus prevalence and virus genome characterization in field-collected ticks (Ixodes ricinus) from risk, non-risk and former risk areas of TBE, and in ticks removed from humans in Germany. Clin Microbiol Infect. 2010;16:238–44. DOIPubMedGoogle Scholar
- Kupča AM, Essbauer S, Zoeller G, de Mendonça PG, Brey R, Rinder M, et al. Isolation and molecular characterization of a tick-borne encephalitis virus strain from a new tick-borne encephalitis focus with severe cases in Bavaria, Germany. Ticks Tick Borne Dis. 2010;1:44–51. DOIPubMedGoogle Scholar
- de Graaf JA, Reimerink JHJ, Voorn GP, Bij de Vaate EA, de Vries A, Rockx B, et al. First human case of tick-borne encephalitis virus infection acquired in the Netherlands, July 2016. Euro Surveill. 2016;21:30318. DOIPubMedGoogle Scholar
- Weststrate AC, Knapen D, Laverman GD, Schot B, Prick JJ, Spit SA, et al. Increasing evidence of tick-borne encephalitis (TBE) virus transmission, the Netherlands, June 2016. Euro Surveill. 2017;22:30482. DOIPubMedGoogle Scholar
Figure
Cite This ArticleTable of Contents – Volume 23, Number 6—June 2017
EID Search Options |
---|
Advanced Article Search – Search articles by author and/or keyword. |
Articles by Country Search – Search articles by the topic country. |
Article Type Search – Search articles by article type and issue. |
Please use the form below to submit correspondence to the authors or contact them at the following address:
Hein Sprong, Center for Infectious Disease Control, National Center for Public Health and the Environment, Antonie van Leeuwenhoeklaan 9, 3721 MA, Bilthoven, the Netherlands
Top