Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 24, Number 2—February 2018
Research

Lethal Respiratory Disease Associated with Human Rhinovirus C in Wild Chimpanzees, Uganda, 2013

Erik J. Scully, Sarmi Basnet, Richard W. Wrangham, Martin N. Muller, Emily Otali, David Hyeroba, Kristine A. Grindle, Tressa E. Pappas, Melissa Emery Thompson, Zarin Machanda, Kelly E. Watters, Ann C. Palmenberg, James E. Gern, and Tony L. GoldbergComments to Author 
Author affiliations: Harvard University, Cambridge, Massachusetts, USA (E.J. Scully, R.W. Wrangham); University of Wisconsin‒Madison, Madison, Wisconsin, USA (S. Basnet, K.A. Grindle, T.E. Pappas, K.E. Watters, A.C. Palmenberg, J.E. Gern, T.L. Goldberg); University of New Mexico, Albuquerque, New Mexico, USA (M.N. Muller, M.E. Thompson); Makerere University, Kampala, Uganda (E. Otali, D. Hyeroba); Tufts University, Grafton, Massachusetts, USA (Z. Machanda)

Main Article

Figure 2

Recombination between viral genotypes rhinovirus C45 and C11 leading to RV-C45-cpz1-2013, the strain identified in the Kanyawara chimpanzee community, Uganda, 2013. Analyses were performed in RDP4 (17) on aligned rhinovirus C genome sequences of 36 known genotypes. Each alignment entry encoded the full or nearly full polyprotein gene sequence, but some sequences were missing fragments (<400 bp) of their respective 5′-UTRs (Δ seq, yellow box at left). The 3′ poly(A) tail was not included. A re

Figure 2. Recombination between viral genotypes rhinovirus C45 and C11 leading to RV-C45-cpz1-2013, the strain identified in the Kanyawara chimpanzee community, Uganda, 2013. Analyses were performed in RDP4 (17) on aligned rhinovirus C genome sequences of 36 known genotypes. Each alignment entry encoded the full or nearly full polyprotein gene sequence, but some sequences were missing fragments (<400 bp) of their respective 5′-UTRs (Δ seq, yellow box at left). The 3′ poly(A) tail was not included. A recombination event between the 2 viruses shown (GenBank nos. JN837686 and EU840952) is the most likely event among all full alignment comparisons (window size 20 bps) according to 6 of the 9 RDP4 algorithms. The average p values were RDP 2.8 × 10−81, GENECONV 3.0 × 10−70, MaxChi 1.4 × 10−18, Chimaera 2.1 × 10−21, SiScan 3.6 × 10–34, and 3Seq 1.5 × 10−27. BootScan, PhylPro, and LARD made no call for these particular parents. Purple box in the 5′-UTR denotes the 99% breakpoint confidence level (combined). Dashed box indicates the position of the most likely swapped fragment. The (Monte Carlo corrected) probability for this event is 2.8 × 10−81. The virus map is scaled to the alignment. Conf, confidence level; RV-C, rhinovirus C; Δ seq, missing sequence; UTR, untranslated region.

Main Article

References
  1. Jacobs  SE, Lamson  DM, St George  K, Walsh  TJ. Human rhinoviruses. Clin Microbiol Rev. 2013;26:13562. DOIPubMedGoogle Scholar
  2. Steinke  JW, Borish  L. Immune responses in rhinovirus-induced asthma exacerbations. Curr Allergy Asthma Rep. 2016;16:78. DOIPubMedGoogle Scholar
  3. Palmenberg  AC, Gern  JE. Classification and evolution of human rhinoviruses. Methods Mol Biol. 2015;1221:110. DOIPubMedGoogle Scholar
  4. Saraya  T, Kurai  D, Ishii  H, Ito  A, Sasaki  Y, Niwa  S, et al. Epidemiology of virus-induced asthma exacerbations: with special reference to the role of human rhinovirus. Front Microbiol. 2014;5:226. DOIPubMedGoogle Scholar
  5. Bizzintino  J, Lee  WM, Laing  IA, Vang  F, Pappas  T, Zhang  G, et al. Association between human rhinovirus C and severity of acute asthma in children. Eur Respir J. 2011;37:103742. DOIPubMedGoogle Scholar
  6. Liu  Y, Hill  MG, Klose  T, Chen  Z, Watters  K, Bochkov  YA, et al. Atomic structure of a rhinovirus C, a virus species linked to severe childhood asthma. Proc Natl Acad Sci U S A. 2016;113:89979002. DOIPubMedGoogle Scholar
  7. Bochkov  YA, Watters  K, Ashraf  S, Griggs  TF, Devries  MK, Jackson  DJ, et al. Cadherin-related family member 3, a childhood asthma susceptibility gene product, mediates rhinovirus C binding and replication. Proc Natl Acad Sci U S A. 2015;112:548590. DOIPubMedGoogle Scholar
  8. Mathieson  I, Lazaridis  I, Rohland  N, Mallick  S, Patterson  N, Roodenberg  SA, et al. Genome-wide patterns of selection in 230 ancient Eurasians. Nature. 2015;528:499503. DOIPubMedGoogle Scholar
  9. Palmenberg  AC. Rhinovirus C, asthma, and cell surface expression of virus receptor CDHR3. J Virol. 2017;91:e00072-17. DOIPubMedGoogle Scholar
  10. Sharp  PM, Rayner  JC, Hahn  BH. Evolution. Great apes and zoonoses. Science. 2013;340:2846. DOIPubMedGoogle Scholar
  11. Köndgen  S, Kühl  H, N’Goran  PK, Walsh  PD, Schenk  S, Ernst  N, et al. Pandemic human viruses cause decline of endangered great apes. Curr Biol. 2008;18:2604. DOIPubMedGoogle Scholar
  12. Köndgen  S, Schenk  S, Pauli  G, Boesch  C, Leendertz  FH. Noninvasive monitoring of respiratory viruses in wild chimpanzees. EcoHealth. 2010;7:33241. DOIPubMedGoogle Scholar
  13. Palacios  G, Lowenstine  LJ, Cranfield  MR, Gilardi  KV, Spelman  L, Lukasik-Braum  M, et al. Human metapneumovirus infection in wild mountain gorillas, Rwanda. Emerg Infect Dis. 2011;17:7113. DOIPubMedGoogle Scholar
  14. Grützmacher  KS, Köndgen  S, Keil  V, Todd  A, Feistner  A, Herbinger  I, et al. Codetection of respiratory syncytial virus in habituated wild western lowland gorillas and humans during a respiratory disease outbreak. EcoHealth. 2016;13:499510. DOIPubMedGoogle Scholar
  15. Toohey-Kurth  K, Sibley  SD, Goldberg  TL. Metagenomic assessment of adventitious viruses in commercial bovine sera. Biologicals. 2017;47:648. DOIPubMedGoogle Scholar
  16. Kumar  S, Stecher  G, Tamura  K. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol Biol Evol. 2016;33:18704. DOIPubMedGoogle Scholar
  17. Martin  DP, Murrell  B, Golden  M, Khoosal  A, Muhire  B. RDP4: Detection and analysis of recombination patterns in virus genomes. Virus Evol. 2015;1:vev003. DOIPubMedGoogle Scholar
  18. Katoh  K, Misawa  K, Kuma  K, Miyata  T. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 2002;30:305966. DOIPubMedGoogle Scholar
  19. Abascal  F, Zardoya  R, Telford  MJ. TranslatorX: multiple alignment of nucleotide sequences guided by amino acid translations. Nucleic Acids Res. 2010;38(suppl_2):W7-13. DOIPubMedGoogle Scholar
  20. Talavera  G, Castresana  J, Kjer  K, Page  R, Sullivan  J. Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst Biol. 2007;56:56477. DOIPubMedGoogle Scholar
  21. Santorum  JM, Darriba  D, Taboada  GL, Posada  D. jmodeltest.org: selection of nucleotide substitution models on the cloud. Bioinformatics. 2014;30:13101. DOIPubMedGoogle Scholar
  22. Guindon  S, Dufayard  JF, Lefort  V, Anisimova  M, Hordijk  W, Gascuel  O. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol. 2010;59:30721. DOIPubMedGoogle Scholar
  23. Krunic  N, Merante  F, Yaghoubian  S, Himsworth  D, Janeczko  R. Advances in the diagnosis of respiratory tract infections: role of the Luminex xTAG respiratory viral panel. Ann N Y Acad Sci. 2011;1222:613. DOIPubMedGoogle Scholar
  24. Bochkov  YA, Gern  JE. Clinical and molecular features of human rhinovirus C. Microbes Infect. 2012;14:48594. DOIPubMedGoogle Scholar
  25. Prado-Martinez  J, Sudmant  PH, Kidd  JM, Li  H, Kelley  JL, Lorente-Galdos  B, et al. Great ape genetic diversity and population history. Nature. 2013;499:4715. DOIPubMedGoogle Scholar
  26. Althaus  CL. Estimating the reproduction number of Ebola virus (EBOV) during the 2014 outbreak in West Africa. PLoS Curr. 2014;6:6.PubMedGoogle Scholar
  27. Sikazwe  CT, Chidlow  GR, Imrie  A, Smith  DW. Reliable quantification of rhinovirus species C using real-time PCR. J Virol Methods. 2016;235:6572. DOIPubMedGoogle Scholar
  28. Bochkov  YA, Grindle  K, Vang  F, Evans  MD, Gern  JE. Improved molecular typing assay for rhinovirus species A, B, and C. J Clin Microbiol. 2014;52:246171. DOIPubMedGoogle Scholar
  29. Harvala  H, McIntyre  CL, Imai  N, Clasper  L, Djoko  CF, LeBreton  M, et al. High seroprevalence of enterovirus infections in apes and old world monkeys. Emerg Infect Dis. 2012;18:2836. DOIPubMedGoogle Scholar
  30. Sadeuh-Mba  SA, Bessaud  M, Joffret  ML, Endegue Zanga  MC, Balanant  J, Mpoudi Ngole  E, et al. Characterization of Enteroviruses from non-human primates in cameroon revealed virus types widespread in humans along with candidate new types and species. PLoS Negl Trop Dis. 2014;8:e3052. DOIPubMedGoogle Scholar
  31. Lu  X, Erdman  DD. Molecular typing of human adenoviruses by PCR and sequencing of a partial region of the hexon gene. Arch Virol. 2006;151:1587602. DOIPubMedGoogle Scholar
  32. Nkogue  CN, Horie  M, Fujita  S, Ogino  M, Kobayashi  Y, Mizukami  K, et al. Molecular epidemiological study of adenovirus infecting western lowland gorillas and humans in and around Moukalaba-Doudou National Park (Gabon). Virus Genes. 2016;52:6718. DOIPubMedGoogle Scholar
  33. Seimon  TA, Olson  SH, Lee  KJ, Rosen  G, Ondzie  A, Cameron  K, et al. Adenovirus and herpesvirus diversity in free-ranging great apes in the Sangha region of the Republic Of Congo. PLoS One. 2015;10:e0118543. DOIPubMedGoogle Scholar
  34. Wevers  D, Metzger  S, Babweteera  F, Bieberbach  M, Boesch  C, Cameron  K, et al. Novel adenoviruses in wild primates: a high level of genetic diversity and evidence of zoonotic transmissions. J Virol. 2011;85:1077484. DOIPubMedGoogle Scholar
  35. Hoppe  E, Pauly  M, Gillespie  TR, Akoua-Koffi  C, Hohmann  G, Fruth  B, et al. Multiple cross-species transmission events of human adenoviruses (HAdV) during hominine evolution. Mol Biol Evol. 2015;32:207284. DOIPubMedGoogle Scholar
  36. Dick  EC. Experimental infections of chimpanzees with human rhinovirus types 14 and 43. Proc Soc Exp Biol Med. 1968;127:107981. DOIPubMedGoogle Scholar
  37. Dick  EC, Dick  CR. A subclinical outbreak of human rhinovirus 31 infection in chimpanzees. Am J Epidemiol. 1968;88:26772. DOIPubMedGoogle Scholar
  38. Goodall  J. The chimpanzees of Gombe: patterns of behavior. Cambridge: Harvard University Press; 1986.
  39. Eggo  RM, Scott  JG, Galvani  AP, Meyers  LA. Respiratory virus transmission dynamics determine timing of asthma exacerbation peaks: Evidence from a population-level model. Proc Natl Acad Sci U S A. 2016;113:21949. DOIPubMedGoogle Scholar
  40. Williams  JM, Lonsdorf  EV, Wilson  ML, Schumacher-Stankey  J, Goodall  J, Pusey  AE. Causes of death in the Kasekela chimpanzees of Gombe National Park, Tanzania. Am J Primatol. 2008;70:76677. DOIPubMedGoogle Scholar
  41. Griggs  TF, Bochkov  YA, Nakagome  K, Palmenberg  AC, Gern  JE. Production, purification, and capsid stability of rhinovirus C types. J Virol Methods. 2015;217:1823. DOIPubMedGoogle Scholar
  42. Honkanen  H, Oikarinen  S, Peltonen  P, Simell  O, Ilonen  J, Veijola  R, et al. Human rhinoviruses including group C are common in stool samples of young Finnish children. J Clin Virol. 2013;56:2504. DOIPubMedGoogle Scholar
  43. Roy  S, Vandenberghe  LH, Kryazhimskiy  S, Grant  R, Calcedo  R, Yuan  X, et al. Isolation and characterization of adenoviruses persistently shed from the gastrointestinal tract of non-human primates. PLoS Pathog. 2009;5:e1000503. DOIPubMedGoogle Scholar
  44. Keele  BF, Jones  JH, Terio  KA, Estes  JD, Rudicell  RS, Wilson  ML, et al. Increased mortality and AIDS-like immunopathology in wild chimpanzees infected with SIVcpz. Nature. 2009;460:5159. DOIPubMedGoogle Scholar
  45. Santiago  ML, Lukasik  M, Kamenya  S, Li  Y, Bibollet-Ruche  F, Bailes  E, et al. Foci of endemic simian immunodeficiency virus infection in wild-living eastern chimpanzees (Pan troglodytes schweinfurthii). J Virol. 2003;77:754562. DOIPubMedGoogle Scholar
  46. Gilardi  KV, Gillespie  TR, Leendertz  FH, Macfie  EJ, Travis  DA, Whittier  CA, et al. Best practice guidelines for health monitoring and disease control in great ape populations. Gland (Switzerland): IUCN Special Survival Commission Primate Specialist Group; 2015.
  47. Reagan  KJ, McGeady  ML, Crowell  RL. Persistence of human rhinovirus infectivity under diverse environmental conditions. Appl Environ Microbiol. 1981;41:61820.PubMedGoogle Scholar
  48. Bischoff  WE, Tucker  BK, Wallis  ML, Reboussin  BA, Pfaller  MA, Hayden  FG, et al. Preventing the airborne spread of Staphylococcus aureus by persons with the common cold: effect of surgical scrubs, gowns, and masks. Infect Control Hosp Epidemiol. 2007;28:114854. DOIPubMedGoogle Scholar
  49. Turner  RB, Fuls  JL, Rodgers  ND. Effectiveness of hand sanitizers with and without organic acids for removal of rhinovirus from hands. Antimicrob Agents Chemother. 2010;54:13634. DOIPubMedGoogle Scholar
  50. Huguenel  ED, Cohn  D, Dockum  DP, Greve  JM, Fournel  MA, Hammond  L, et al. Prevention of rhinovirus infection in chimpanzees by soluble intercellular adhesion molecule-1. Am J Respir Crit Care Med. 1997;155:120610. DOIPubMedGoogle Scholar

Main Article

Page created: January 17, 2018
Page updated: January 17, 2018
Page reviewed: January 17, 2018
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.
file_external