Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 24, Number 2—February 2018
Research

Spread of Meropenem-Resistant Streptococcus pneumoniae Serotype 15A-ST63 Clone in Japan, 2012–2014

Satoshi NakanoComments to Author , Takao Fujisawa, Yutaka Ito, Bin Chang, Yasufumi Matsumura, Masaki Yamamoto, Miki Nagao, Shigeru Suga, Makoto Ohnishi, and Satoshi Ichiyama
Author affiliations: Kyoto University Graduate School of Medicine, Kyoto, Japan (S. Nakano, Y. Matsumura, M. Yamamoto, M. Nagao, S. Ichiyama); National Hospital Organization Mie National Hospital, Tsu, Japan (T. Fujisawa, S. Suga); Nagoya City University Graduate School of Medical Science, Nagoya, Japan (Y. Ito); National Institute of Infectious Diseases, Tokyo, Japan (B. Chang, M. Ohnishi)

Main Article

Figure 1

Phylogenic tree and predicted recombination sites created in Genealogies Unbiased By recomBinations In Nucleotide Sequences (28) by using all Japan and global serotype 15A-ST63 pneumococcal isolates. Branch colors in the tree indicate where the isolates were collected: red, Japan; black, United Kingdom; blue, United States; green, Canada. The column on the right of the tree indicates the main region from which the isolates were derived, meropenem susceptibility, and isolate names. The phylogenic

Figure 1. Phylogenic tree and predicted recombination sites created in Genealogies Unbiased By recomBinations In Nucleotide Sequences (28) by using all Japan and global serotype 15A-ST63 pneumococcal isolates. Branch colors in the tree indicate where the isolates were collected: red, Japan; black, United Kingdom; blue, United States; green, Canada. The column on the right of the tree indicates the main region from which the isolates were derived, meropenem susceptibility, and isolate names. The phylogenic tree was created by using Streptococcus pneumoniae G54 as an outgroup isolate. Clade I consists of only Japan serotype 15A-ST63 isolates; clade I-MNS consists of only Japan meropenem-nonsusceptible serotype 15A-ST63 isolates; clade II consists of the rest of the Japan meropenem-susceptible serotype 15A-ST63 isolates that are not included in clade I. The block chart on the right shows the predicted recombination sites in each isolate. Blue blocks are unique to a single isolate; red blocks are shared by multiple isolates. All isolates shaded in pink are meropenem nonsusceptible. Arrows indicate reference strains S. pneumoniae G54 and PMEN 15A-25. Scale bar indicates nucleotide substitutions per site; CN, Canada; G54, S. pneumoniae G54; M, million base pairs; JP-NS, Japan meropenem nonsusceptible; JP-S, Japan meropenem susceptible; PMEN, Pneumococcal Molecular Epidemiology Network; ST, sequence type; UK, United Kingdom; USA, United States.

Main Article

References
  1. O’Brien  KL, Wolfson  LJ, Watt  JP, Henkle  E, Deloria-Knoll  M, McCall  N, et al.; Hib and Pneumococcal Global Burden of Disease Study Team. Burden of disease caused by Streptococcus pneumoniae in children younger than 5 years: global estimates. Lancet. 2009;374:893902. DOIPubMedGoogle Scholar
  2. Geno  KA, Gilbert  GL, Song  JY, Skovsted  IC, Klugman  KP, Jones  C, et al. Pneumococcal capsules and their types: past, present, and future. Clin Microbiol Rev. 2015;28:87199. DOIPubMedGoogle Scholar
  3. Waight  PA, Andrews  NJ, Ladhani  NJ, Sheppard  CL, Slack  MP, Miller  E. Effect of the 13-valent pneumococcal conjugate vaccine on invasive pneumococcal disease in England and Wales 4 years after its introduction: an observational cohort study. Lancet Infect Dis. 2015;15:629. DOIPubMedGoogle Scholar
  4. Chiba  N, Morozumi  M, Shouji  M, Wajima  T, Iwata  S, Ubukata  K; Invasive Pneumococcal Diseases Surveillance Study Group. Changes in capsule and drug resistance of Pneumococci after introduction of PCV7, Japan, 2010-2013. Emerg Infect Dis. 2014;20:11329. DOIPubMedGoogle Scholar
  5. Metcalf  BJ, Gertz  RE Jr, Gladstone  RA, Walker  H, Sherwood  LK, Jackson  D, et al. Strain features and distributions in pneumococci from children with invasive disease before and after 13 valent conjugate vaccine implementation in the United States. Clin Microbiol Infect. 2015.p
  6. Song  JY, Nahm  MH, Moseley  MA. Clinical implications of pneumococcal serotypes: invasive disease potential, clinical presentations, and antibiotic resistance. J Korean Med Sci. 2013;28:415. DOIPubMedGoogle Scholar
  7. Nakano  S, Fujisawa  T, Ito  Y, Chang  B, Suga  S, Noguchi  T, et al. Serotypes, antimicrobial susceptibility, and molecular epidemiology of invasive and non-invasive Streptococcus pneumoniae isolates in paediatric patients after the introduction of 13-valent conjugate vaccine in a nationwide surveillance study conducted in Japan in 2012-2014. Vaccine. 2016;34:6776. DOIPubMedGoogle Scholar
  8. Duvvuri  VR, Deng  X, Teatero  S, Memari  N, Athey  T, Fittipaldi  N, et al. Population structure and drug resistance patterns of emerging non-PCV-13 Streptococcus pneumoniae serotypes 22F, 15A, and 8 isolated from adults in Ontario, Canada. Infect Genet Evol. 2016;42:18. DOIPubMedGoogle Scholar
  9. van der Linden  M, Perniciaro  S, Imöhl  M. Increase of serotypes 15A and 23B in IPD in Germany in the PCV13 vaccination era. BMC Infect Dis. 2015;15:207. DOIPubMedGoogle Scholar
  10. Sheppard  C, Fry  NK, Mushtaq  S, Woodford  N, Reynolds  R, Janes  R, et al. Rise of multidrug-resistant non-vaccine serotype 15A Streptococcus pneumoniae in the United Kingdom, 2001 to 2014. Euro Surveill. 2016;21:30423. DOIPubMedGoogle Scholar
  11. Chi  HC, Hsieh  YC, Tsai  MH, Lee  CH, Kuo  KC, Huang  CT, et al. Impact of pneumococcal conjugate vaccine in children on the serotypic epidemiology of adult invasive pneumococcal diseases in Taiwan. J Microbiol Immunol Infect. 2016;S1684-1182(16)30144-X.
  12. Cilveti  R, Olmo  M, Pérez-Jove  J, Picazo  JJ, Arimany  JL, Mora  E, et al.; HERMES Study Group. Epidemiology of otitis media with spontaneous perforation of the tympanic membrane in young children and association with bacterial nasopharyngeal carriage, recurrences and pneumococcal vaccination in Catalonia, Spain—The Prospective HERMES Study. PLoS One. 2017;12:e0170316. DOIPubMedGoogle Scholar
  13. Devine  VT, Cleary  DW, Jefferies  JM, Anderson  R, Morris  DE, Tuck  AC, et al. The rise and fall of pneumococcal serotypes carried in the PCV era. Vaccine. 2017;35:12938. DOIPubMedGoogle Scholar
  14. Kaur  R, Casey  JR, Pichichero  ME. Emerging Streptococcus pneumoniae strains colonizing the nasopharynx in children after 13-valent pneumococcal conjugate vaccination in comparison to the 7-valent era, 2006-2015. Pediatr Infect Dis J. 2016;35:9016. DOIPubMedGoogle Scholar
  15. Horácio  AN, Silva-Costa  C, Lopes  JP, Ramirez  M, Melo-Cristino  J; Portuguese Group for the Study of Streptococcal Infections. Serotype 3 remains the leading cause of invasive pneumococcal disease in adults in Portugal (2012–2014) despite continued reductions in other 13-valent conjugate vaccine serotypes. Front Microbiol. 2016;7:1616. DOIPubMedGoogle Scholar
  16. Soysal  A, Karabağ-Yılmaz  E, Kepenekli  E, Karaaslan  A, Cagan  E, Atıcı  S, et al. The impact of a pneumococcal conjugate vaccination program on the nasopharyngeal carriage, serotype distribution and antimicrobial resistance of Streptococcus pneumoniae among healthy children in Turkey. Vaccine. 2016;34:3894900. DOIPubMedGoogle Scholar
  17. Emory University. Pneumococcal Molecular Epidemiology Network (PMEN) [cited 2017 Nov 28]. http://web1.sph.emory.edu/PMEN/
  18. Hakenbeck  R, Brückner  R, Denapaite  D, Maurer  P. Molecular mechanisms of β-lactam resistance in Streptococcus pneumoniae. Future Microbiol. 2012;7:395410. DOIPubMedGoogle Scholar
  19. Laible  G, Spratt  BG, Hakenbeck  R. Interspecies recombinational events during the evolution of altered PBP 2x genes in penicillin-resistant clinical isolates of Streptococcus pneumoniae. Mol Microbiol. 1991;5:19932002. DOIPubMedGoogle Scholar
  20. Dowson  CG, Hutchison  A, Brannigan  JA, George  RC, Hansman  D, Liñares  J, et al. Horizontal transfer of penicillin-binding protein genes in penicillin-resistant clinical isolates of Streptococcus pneumoniae. Proc Natl Acad Sci U S A. 1989;86:88426. DOIPubMedGoogle Scholar
  21. Martin  C, Sibold  C, Hakenbeck  R. Relatedness of penicillin-binding protein 1a genes from different clones of penicillin-resistant Streptococcus pneumoniae isolated in South Africa and Spain. EMBO J. 1992;11:38316.PubMedGoogle Scholar
  22. Tzouvelekis  LS, Markogiannakis  A, Psichogiou  M, Tassios  PT, Daikos  GL. Carbapenemases in Klebsiella pneumoniae and other Enterobacteriaceae: an evolving crisis of global dimensions. Clin Microbiol Rev. 2012;25:682707. DOIPubMedGoogle Scholar
  23. Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing; twenty-fifth informational supplement (M100–S25). Wayne (PA): The Institute; 2015.
  24. Croucher  NJ, Finkelstein  JA, Pelton  SI, Parkhill  J, Bentley  SD, Lipsitch  M, et al. Population genomic datasets describing the post-vaccine evolutionary epidemiology of Streptococcus pneumoniae. Sci Data. 2015;2:150058. DOIPubMedGoogle Scholar
  25. Kapatai  G, Sheppard  CL, Al-Shahib  A, Litt  DJ, Underwood  AP, Harrison  TG, et al. Whole genome sequencing of Streptococcus pneumoniae: development, evaluation and verification of targets for serogroup and serotype prediction using an automated pipeline. PeerJ. 2016;4:e2477. DOIPubMedGoogle Scholar
  26. Bankevich  A, Nurk  S, Antipov  D, Gurevich  AA, Dvorkin  M, Kulikov  AS, et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol. 2012;19:45577. DOIPubMedGoogle Scholar
  27. Altschul  SF, Gish  W, Miller  W, Myers  EW, Lipman  DJ. Basic local alignment search tool. J Mol Biol. 1990;215:40310. DOIPubMedGoogle Scholar
  28. Croucher  NJ, Page  AJ, Connor  TR, Delaney  AJ, Keane  JA, Bentley  SD, et al. Rapid phylogenetic analysis of large samples of recombinant bacterial whole genome sequences using Gubbins. Nucleic Acids Res. 2015;43:e15. DOIPubMedGoogle Scholar
  29. Metcalf  BJ, Chochua  S, Gertz  RE Jr, Li  Z, Walker  H, Tran  T, et al.; Active Bacterial Core surveillance team. Using whole genome sequencing to identify resistance determinants and predict antimicrobial resistance phenotypes for year 2015 invasive pneumococcal disease isolates recovered in the United States. Clin Microbiol Infect. 2016;22:1002.e18. DOIPubMedGoogle Scholar
  30. Li  Y, Metcalf  BJ, Chochua  S, Li  Z, Gertz  RE Jr, Walker  H, et al. Penicillin-binding protein transpeptidase signatures for tracking and predicting β-lactam resistance levels in Streptococcus pneumoniae. MBio. 2016;7:e0075616. DOIPubMedGoogle Scholar
  31. Centers for Disease Control and Prevention. Minimum inhibitory concentrations predicted by the penicillin binding protein type [cited 2017 Nov 28]. https://www.cdc.gov/streplab/mic-tables.html
  32. Gertz  RE Jr, Li  Z, Pimenta  FC, Jackson  D, Juni  BA, Lynfield  R, et al.; Active Bacterial Core Surveillance Team. Increased penicillin nonsusceptibility of nonvaccine-serotype invasive pneumococci other than serotypes 19A and 6A in post-7-valent conjugate vaccine era. J Infect Dis. 2010;201:7705. DOIPubMedGoogle Scholar
  33. Beall  BW, Gertz  RE, Hulkower  RL, Whitney  CG, Moore  MR, Brueggemann  AB. Shifting genetic structure of invasive serotype 19A pneumococci in the United States. J Infect Dis. 2011;203:13608. DOIPubMedGoogle Scholar
  34. Ardanuy  C, de la Campa  AG, García  E, Fenoll  A, Calatayud  L, Cercenado  E, et al. Spread of Streptococcus pneumoniae serotype 8-ST63 multidrug-resistant recombinant Clone, Spain. Emerg Infect Dis. 2014;20:184856. DOIPubMedGoogle Scholar
  35. Chochua  S, Metcalf  BJ, Li  Z, Walker  H, Tran  T, McGee  L, et al. Invasive serotype 35B pneumococci including an expanding serotype switch lineage, United States, 2015–2016. Emerg Infect Dis. 2017;23:92230. DOIPubMedGoogle Scholar

Main Article

Page created: January 17, 2018
Page updated: January 17, 2018
Page reviewed: January 17, 2018
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.
file_external