Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 24, Number 4—April 2018
Dispatch

Imipenem Resistance in Clostridium difficile Ribotype 017, Portugal

Joana Isidro, Andrea Santos, Alexandra Nunes, Vítor Borges, Catarina Silva, Luís Vieira, Aristides L. Mendes, Mónica Serrano, Adriano O. Henriques, João Paulo Gomes, and Mónica OleastroComments to Author 
Author affiliations: National Institute of Health, Lisbon, Portugal (J. Isidro, A. Santos, A. Nunes, V. Borges, C. Silva, L. Vieira, J.P. Gomes, M. Oleastro); Instituto de Tecnologia Química e Biológica António Xavier, Oeiras, Portugal (A.L. Mendes, M. Serrano, A.O. Henriques)

Main Article

Table 1

Susceptibility of Clostridium difficile RT017 imipenem-resistant isolates from hospital A and imipenem-susceptible isolates from hospital B to 11 antimicrobial drugs, Portugal*

Hospital
Resistance breakpoint†
Antimicrobial drug, MIC breakpoints, mg/L
IMP‡ ETP‡ MRP‡ MXF†§ MTZ†§ VAN†§ CLI‡ CHL‡ RIF† TGC† TET‡
>16
>16
>16
>4
>2
>2
>8
>32
>0.004
>0.25
>16
A, 22 isolates
MIC range >32 3–16 1.5–4 >32 <0.016–1 0.38–2 >256 2–6 >32 <0.016–0.094 16–32
GM MIC 32 7.56 2.31 32 0.12 0.73 256 3.29 32 0.025 18.08
MIC90 32 12 3 >32 0.38 2 256 4 32 0.032 32
MIC50 32 6 2 >32 0.19 0.75 256 3 32 0.023 16
% Resistant
100
4.5
0
100
0
0
100
0
100
0
100
B, 3 isolates
MIC range 1.5–3 1.5–2 0.5–1.5 1.5 <0.016–0.25 0.38–0.75 >256 3–4 >32 <0.016–0.023 16
GM MIC 2.08 1.82 0.83 1.5 0.072 0.60 256 3.30 32 0.020 16
MIC90 3 2 1.5 1.5 0.25 0.75 256 4 32 0.023 16
MIC50 2 2 0.75 1.5 0.094 0.75 256 3 32 0.023 16
% Resistant
0
0
0
0
0
0
100
0
100
0
100
p value <0.0001 <0.0001 <0.0001 <0.0001 0.45 0.56 ND 0.98 ND 0.41 0.51

*CHL, chloramphenicol; CLI, clindamycin; ETP, ertapenem; GM, geometric mean; IMP, imipenem; MIC50, minimal inhibitory concentration for 50% of strains; MIC90, minimal inhibitory concentration for 90% of strains; MRP, meropenem; MTZ, metronidazole; MXF, moxifloxacin; ND, not done; RIF, rifampin; TGC, tigecycline; VAN, vancomycin.
†European Committee on Antimicrobial Susceptibility Testing breakpoint.
‡Clinical and Laboratory Standards Institute breakpoint.
§Previously determined (9).

Main Article

References
  1. European Centre for Disease Prevention and Control. Point prevalence survey of healthcare-associated infections and antimicrobial use in European acute care hospitals, 2011–2012. Stockholm: The Centre; 2013.
  2. Smits  WK, Lyras  D, Lacy  DB, Wilcox  MH, Kuijper  EJ. Clostridium difficile infection. Nat Rev Dis Primers. 2016;2:16020. DOIPubMedGoogle Scholar
  3. Slimings  C, Riley  TV. Antibiotics and hospital-acquired Clostridium difficile infection: update of systematic review and meta-analysis. J Antimicrob Chemother. 2014;69:88191. DOIPubMedGoogle Scholar
  4. Spigaglia  P. Recent advances in the understanding of antibiotic resistance in Clostridium difficile infection. Ther Adv Infect Dis. 2016;3:2342. DOIPubMedGoogle Scholar
  5. Gerding  DN, Lessa  FC. The epidemiology of Clostridium difficile infection inside and outside health care institutions. Infect Dis Clin North Am. 2015;29:3750. DOIPubMedGoogle Scholar
  6. Freeman  J, Bauer  MP, Baines  SD, Corver  J, Fawley  WN, Goorhuis  B, et al. The changing epidemiology of Clostridium difficile infections. Clin Microbiol Rev. 2010;23:52949. DOIPubMedGoogle Scholar
  7. King  AM, Mackin  KE, Lyras  D. Emergence of toxin A-negative, toxin B-positive Clostridium difficile strains: epidemiological and clinical considerations. Future Microbiol. 2015;10:14. DOIPubMedGoogle Scholar
  8. Freeman  J, Vernon  J, Morris  K, Nicholson  S, Todhunter  S, Longshaw  C, et al.; Pan-European Longitudinal Surveillance of Antibiotic Resistance among Prevalent Clostridium difficile Ribotypes’ Study Group. Pan-European longitudinal surveillance of antibiotic resistance among prevalent Clostridium difficile ribotypes. Clin Microbiol Infect. 2015;21:248.e916. DOIPubMedGoogle Scholar
  9. Santos  A, Isidro  J, Silva  C, Boaventura  L, Diogo  J, Faustino  A, et al. Molecular and epidemiologic study of Clostridium difficile reveals unusual heterogeneity in clinical strains circulating in different regions in Portugal. Clin Microbiol Infect. 2016;22:695700. DOIPubMedGoogle Scholar
  10. Lee  JH, Lee  Y, Lee  K, Riley  TV, Kim  H. The changes of PCR ribotype and antimicrobial resistance of Clostridium difficile in a tertiary care hospital over 10 years. J Med Microbiol. 2014;63:81923. DOIPubMedGoogle Scholar
  11. He  M, Sebaihia  M, Lawley  TD, Stabler  RA, Dawson  LF, Martin  MJ, et al. Evolutionary dynamics of Clostridium difficile over short and long time scales. Proc Natl Acad Sci U S A. 2010;107:752732. DOIPubMedGoogle Scholar
  12. Zapun  A, Contreras-Martel  C, Vernet  T. Penicillin-binding proteins and β-lactam resistance. FEMS Microbiol Rev. 2008;32:36185. DOIPubMedGoogle Scholar
  13. Serrano  M, Kint  N, Pereira  FC, Saujet  L, Boudry  P, Dupuy  B, et al. A recombination directionality factor controls the cell type-specific activation of σK and the fidelity of spore development in Clostridium difficile. PLoS Genet. 2016;12:e1006312. DOIPubMedGoogle Scholar
  14. He  M, Miyajima  F, Roberts  P, Ellison  L, Pickard  DJ, Martin  MJ, et al. Emergence and global spread of epidemic healthcare-associated Clostridium difficile. Nat Genet. 2013;45:10913. DOIPubMedGoogle Scholar

Main Article

Page created: March 16, 2018
Page updated: March 16, 2018
Page reviewed: March 16, 2018
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.
file_external