Volume 24, Number 4—April 2018
Dispatch
Imipenem Resistance in Clostridium difficile Ribotype 017, Portugal
Table 1
Susceptibility of Clostridium difficile RT017 imipenem-resistant isolates from hospital A and imipenem-susceptible isolates from hospital B to 11 antimicrobial drugs, Portugal*
Hospital |
Resistance breakpoint† |
Antimicrobial drug, MIC breakpoints, mg/L |
||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
IMP‡ | ETP‡ | MRP‡ | MXF†§ | MTZ†§ | VAN†§ | CLI‡ | CHL‡ | RIF† | TGC† | TET‡ | ||
>16 |
>16 |
>16 |
>4 |
>2 |
>2 |
>8 |
>32 |
>0.004 |
>0.25 |
>16 |
||
A, 22 isolates |
MIC range | >32 | 3–16 | 1.5–4 | >32 | <0.016–1 | 0.38–2 | >256 | 2–6 | >32 | <0.016–0.094 | 16–32 |
GM MIC | 32 | 7.56 | 2.31 | 32 | 0.12 | 0.73 | 256 | 3.29 | 32 | 0.025 | 18.08 | |
MIC90 | 32 | 12 | 3 | >32 | 0.38 | 2 | 256 | 4 | 32 | 0.032 | 32 | |
MIC50 | 32 | 6 | 2 | >32 | 0.19 | 0.75 | 256 | 3 | 32 | 0.023 | 16 | |
% Resistant |
100 |
4.5 |
0 |
100 |
0 |
0 |
100 |
0 |
100 |
0 |
100 |
|
B, 3 isolates |
MIC range | 1.5–3 | 1.5–2 | 0.5–1.5 | 1.5 | <0.016–0.25 | 0.38–0.75 | >256 | 3–4 | >32 | <0.016–0.023 | 16 |
GM MIC | 2.08 | 1.82 | 0.83 | 1.5 | 0.072 | 0.60 | 256 | 3.30 | 32 | 0.020 | 16 | |
MIC90 | 3 | 2 | 1.5 | 1.5 | 0.25 | 0.75 | 256 | 4 | 32 | 0.023 | 16 | |
MIC50 | 2 | 2 | 0.75 | 1.5 | 0.094 | 0.75 | 256 | 3 | 32 | 0.023 | 16 | |
% Resistant |
0 |
0 |
0 |
0 |
0 |
0 |
100 |
0 |
100 |
0 |
100 |
|
p value | <0.0001 | <0.0001 | <0.0001 | <0.0001 | 0.45 | 0.56 | ND | 0.98 | ND | 0.41 | 0.51 |
*CHL, chloramphenicol; CLI, clindamycin; ETP, ertapenem; GM, geometric mean; IMP, imipenem; MIC50, minimal inhibitory concentration for 50% of strains; MIC90, minimal inhibitory concentration for 90% of strains; MRP, meropenem; MTZ, metronidazole; MXF, moxifloxacin; ND, not done; RIF, rifampin; TGC, tigecycline; VAN, vancomycin.
†European Committee on Antimicrobial Susceptibility Testing breakpoint.
‡Clinical and Laboratory Standards Institute breakpoint.
§Previously determined (9).
References
- European Centre for Disease Prevention and Control. Point prevalence survey of healthcare-associated infections and antimicrobial use in European acute care hospitals, 2011–2012. Stockholm: The Centre; 2013.
- Smits WK, Lyras D, Lacy DB, Wilcox MH, Kuijper EJ. Clostridium difficile infection. Nat Rev Dis Primers. 2016;2:16020. DOIPubMedGoogle Scholar
- Slimings C, Riley TV. Antibiotics and hospital-acquired Clostridium difficile infection: update of systematic review and meta-analysis. J Antimicrob Chemother. 2014;69:881–91. DOIPubMedGoogle Scholar
- Spigaglia P. Recent advances in the understanding of antibiotic resistance in Clostridium difficile infection. Ther Adv Infect Dis. 2016;3:23–42. DOIPubMedGoogle Scholar
- Gerding DN, Lessa FC. The epidemiology of Clostridium difficile infection inside and outside health care institutions. Infect Dis Clin North Am. 2015;29:37–50. DOIPubMedGoogle Scholar
- Freeman J, Bauer MP, Baines SD, Corver J, Fawley WN, Goorhuis B, et al. The changing epidemiology of Clostridium difficile infections. Clin Microbiol Rev. 2010;23:529–49. DOIPubMedGoogle Scholar
- King AM, Mackin KE, Lyras D. Emergence of toxin A-negative, toxin B-positive Clostridium difficile strains: epidemiological and clinical considerations. Future Microbiol. 2015;10:1–4. DOIPubMedGoogle Scholar
- Freeman J, Vernon J, Morris K, Nicholson S, Todhunter S, Longshaw C, et al.; Pan-European Longitudinal Surveillance of Antibiotic Resistance among Prevalent Clostridium difficile Ribotypes’ Study Group. Pan-European longitudinal surveillance of antibiotic resistance among prevalent Clostridium difficile ribotypes. Clin Microbiol Infect. 2015;21:248.e9–16. DOIPubMedGoogle Scholar
- Lee JH, Lee Y, Lee K, Riley TV, Kim H. The changes of PCR ribotype and antimicrobial resistance of Clostridium difficile in a tertiary care hospital over 10 years. J Med Microbiol. 2014;63:819–23. DOIPubMedGoogle Scholar
- He M, Sebaihia M, Lawley TD, Stabler RA, Dawson LF, Martin MJ, et al. Evolutionary dynamics of Clostridium difficile over short and long time scales. Proc Natl Acad Sci U S A. 2010;107:7527–32. DOIPubMedGoogle Scholar
- Zapun A, Contreras-Martel C, Vernet T. Penicillin-binding proteins and β-lactam resistance. FEMS Microbiol Rev. 2008;32:361–85. DOIPubMedGoogle Scholar
- Serrano M, Kint N, Pereira FC, Saujet L, Boudry P, Dupuy B, et al. A recombination directionality factor controls the cell type-specific activation of σK and the fidelity of spore development in Clostridium difficile. PLoS Genet. 2016;12:e1006312. DOIPubMedGoogle Scholar
- He M, Miyajima F, Roberts P, Ellison L, Pickard DJ, Martin MJ, et al. Emergence and global spread of epidemic healthcare-associated Clostridium difficile. Nat Genet. 2013;45:109–13. DOIPubMedGoogle Scholar