Volume 24, Number 5—May 2018
Dispatch
Antimicrobial-Resistant Bacteria in Infected Wounds, Ghana, 20141
Table 1
Drug | % Resistant |
|||||||
---|---|---|---|---|---|---|---|---|
Staphylococcus aureus, n = 31 | Enterococcus faecalis, n = 21 | Proteus mirabilis, n = 20 | Escherichia coli, n = 19 | Klebsiella pneumoniae, n = 13 | Enterobacter cloacae complex, n = 10 | Pseudomonas aeruginosa, n = 20 | Acinetobacter. baumannii complex, n = 8 | |
PEN | 93.5 | |||||||
AMP | 0 | 70.0 | 94.7 | 100 | 100 | |||
OXA | 0 | |||||||
SAM | 0 | 45.0 | 82.2 | 69.2 | 100 | |||
TZP | 0 | 10.5 | 46.2 | 30.0 | 10.0 | |||
CXM | 5.0 | 57.9 | 46.2 | 80.0 | ||||
CTX | 5.0 | 47.4 | 46.2 | 40.0 | ||||
CAZ | 5.0 | 47.4 | 46.2 | 40.0 | 5.0 | 37.5† | ||
IPM | 0 | 0 | ||||||
MEM | 0 | 0 | 0 | 0 | 5.0 | 0 | ||
ERY | 3.2 | 100 | ||||||
CLI | 3.2 | 100 | ||||||
TET | 67.7 | 100 | ||||||
GEN | 3.2 | 15.0 | 46.2 | 46.2 | 40.0 | 10.0 | 62.5 | |
AMI | 0 | 0 | ||||||
CIP | 20.0 | 46.2 | 46.2 | 30.0 | 15.0 | 37.5 | ||
LVX | 0 | |||||||
SXT | 32.3 | 100 | 75.0 | 69.2 | 69.2 | 50.0 | ||
FOF | 0 | |||||||
RIF | 0 | |||||||
VAN | 0 | 0 |
*Antimicrobial susceptibility testing was performed with VITEK 2 (bioMérieux, Marcy-l'Étoile, France) according to the EUCAST breakpoint tables for interpretation of MICs, version 4.0, 2014 (7). Blank cells indicate no testing performed. AMI, amikacin; AMP, ampicillin; CAZ, ceftazidime; CIP, ciprofloxacin; CLI, clindamycin; CTX, cefotaxime; CXM, cefuroxime; ERY, erythromycin; FOF, fosfomycin; GEN, gentamicin; IPM, imipenem; LVX, levofloxacin; MEM, meropenem; OXA, oxacillin; PEN, penicillin; RIF, rifampin; SAM, ampicillin/sulbactam; SXT, trimethoprim/sulfamethoxazole; TET, tetracycline; TZP, piperacillin/tazobactam; VAN, vancomycin.
†The interpretation of the CAZ MIC for A. baumannii complex followed the recommendations of the Clinical and Laboratory Standards Institute performance standards for antimicrobial susceptibility testing (8).
References
- Vernet G, Mary C, Altmann DM, Doumbo O, Morpeth S, Bhutta ZA, et al. Surveillance for antimicrobial drug resistance in under-resourced countries. Emerg Infect Dis. 2014;20:434–41. DOIPubMedGoogle Scholar
- Gross U, Amuzu SK, de Ciman R, Kassimova I, Gross L, Rabsch W, et al. Bacteremia and antimicrobial drug resistance over time, Ghana. Emerg Infect Dis. 2011;17:1879–82. DOIPubMedGoogle Scholar
- Kumburu HH, Sonda T, Mmbaga BT, Alifrangis M, Lund O, Kibiki G, et al. Patterns of infections, aetiological agents and antimicrobial resistance at a tertiary care hospital in northern Tanzania. Trop Med Int Health. 2017;22:454–64. DOIPubMedGoogle Scholar
- Sen CK, Gordillo GM, Roy S, Kirsner R, Lambert L, Hunt TK, et al. Human skin wounds: a major and snowballing threat to public health and the economy. Wound Repair Regen. 2009;17:763–71. DOIPubMedGoogle Scholar
- Leopold SJ, van Leth F, Tarekegn H, Schultsz C. Antimicrobial drug resistance among clinically relevant bacterial isolates in sub-Saharan Africa: a systematic review. J Antimicrob Chemother. 2014;69:2337–53. DOIPubMedGoogle Scholar
- Cheesbrough M. District laboratory practice in tropical countries. Part 2. 2nd ed. Cambridge (UK): Cambridge University Press; 2006.
- The European Committee on Antimicrobial Susceptibility Testing. Breakpoint tables for interpretation of MICs and zone diameters. Version 4.0. 2014 [cited 2017 Sep 9]. http://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Breakpoint_tables/Breakpoint_table_v_4.0.pdf
- Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing: twenty-fourth informational supplement (M100–S24). Wayne (PA): The Institute; 2014.
- Nwankwo E, Edino S. Seasonal variation and risk factors associated with surgical site infection rate in Kano, Nigeria. Turk J Med Sci. 2014;44:674–80. DOIPubMedGoogle Scholar
- Ntirenganya C, Manzi O, Muvunyi CM, Ogbuagu O. High prevalence of antimicrobial resistance among common bacterial isolates in a tertiary healthcare facility in Rwanda. Am J Trop Med Hyg. 2015;92:865–70. DOIPubMedGoogle Scholar
- Manyahi J, Matee MI, Majigo M, Moyo S, Mshana SE, Lyamuya EF. Predominance of multi-drug resistant bacterial pathogens causing surgical site infections in Muhimbili National Hospital, Tanzania. BMC Res Notes. 2014;7:500. DOIPubMedGoogle Scholar
- Mengesha RE, Kasa BG, Saravanan M, Berhe DF, Wasihun AG. Aerobic bacteria in post surgical wound infections and pattern of their antimicrobial susceptibility in Ayder Teaching and Referral Hospital, Mekelle, Ethiopia. BMC Res Notes. 2014;7:575. DOIPubMedGoogle Scholar
- Falagas ME, Karageorgopoulos DE, Leptidis J, Korbila IP. MRSA in Africa: filling the global map of antimicrobial resistance. PLoS One. 2013;8:e68024. DOIPubMedGoogle Scholar
- Morgan DJ, Okeke IN, Laxminarayan R, Perencevich EN, Weisenberg S. Non-prescription antimicrobial use worldwide: a systematic review. Lancet Infect Dis. 2011;11:692–701. DOIPubMedGoogle Scholar
- Elder DP, Kuentz M, Holm R. Antibiotic resistance: the need for a global strategy. J Pharm Sci. 2016;105:2278–87. DOIPubMedGoogle Scholar
1Preliminary results from this study were presented at the Annual Meeting of the German Society of Tropical Medicine and International Health; October 7–8, 2016; Bonn, Germany; and at the 69th Annual Meeting of the German Society for Hygiene and Microbiology; March 5–8, 2017; Wuerzburg, Germany.
2These authors contributed equally to this article.