Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 24, Number 7—July 2018
Perspective

Effects of Sexual Network Connectivity and Antimicrobial Drug Use on Antimicrobial Resistance in Neisseria gonorrhoeae

Chris R. KenyonComments to Author  and Ilan S. Schwartz
Author affiliations: Instituut voor Tropische Geneeskunde, Antwerp, Belgium (C.R. Kenyon); University of Cape Town, Cape Town, South Africa (C.R. Kenyon); University of Alberta, Edmonton, Alberta, Canada (I.S. Schwartz)

Main Article

Table 2

Four mechanisms whereby antimicrobial usage might select for antimicrobial resistance in Neisseria gonorrhoeae in a population

Mechanism Description
Emergence of resistance during treatment
A large proportion of N. gonorrhoeae infections, particularly in MSM, are asymptomatic colonization of the pharynx, where the penetration of many antimicrobials is relatively poor. Because of this or other reasons for suboptimal therapy, a subpopulation of antimicrobial-resistant N. gonorrhoeae may emerge from treatment and may subsequently be transmitted to others.
Reduced transmission of susceptible strains
Treating patients with antimicrobial-sensitive N. gonorrhoeae reduces the probability of transmission to others, which in turn increases the probability that others will become infected with resistant N. gonorrhoeae strains.
Increased susceptibility to colonization
Eradicating a susceptible N. gonorrhoeae strain with treatment may enable infection by a new, resistant N. gonorrhoeae strain previously excluded through bacterial competition. This is possible mainly in high-transmission settings.
Increased density of resistant bacteria following treatment If a person is infected with an antimicrobial-resistant N. gonorrhoeae strain, treatment may eradicate susceptible competing commensal microbes. Relieved of competition, the resistant N. gonorrhoeae strain could expand in the vacated niche.

*Based on Lipsitch et al. (18).

Main Article

References
  1. Unemo  M, Del Rio  C, Shafer  WM. Antimicrobial resistance expressed by Neisseria gonorrhoeae: a major global public health problem in the 21st century. Microbiol Spectr. 2016;4:4.PubMedGoogle Scholar
  2. Lewis  DA. The role of core groups in the emergence and dissemination of antimicrobial-resistant N gonorrhoeae. [Erratum in: Sex Transm Infect 2014;90:400.]. Sex Transm Infect. 2013;89(Suppl 4):iv4751. DOIPubMedGoogle Scholar
  3. Kirkcaldy  RD, Zaidi  A, Hook  EW III, Holmes  KK, Soge  O, del Rio  C, et al. Neisseria gonorrhoeae antimicrobial resistance among men who have sex with men and men who have sex exclusively with women: the Gonococcal Isolate Surveillance Project, 2005-2010. [Erratum in: Ann Intern Med. 2013;159:372.]. Ann Intern Med. 2013;158:3218. DOIPubMedGoogle Scholar
  4. Kenyon  C, Osbak  K. Certain attributes of the sexual ecosystem of high-risk MSM have resulted in an altered microbiome with an enhanced propensity to generate and transmit antibiotic resistance. Med Hypotheses. 2014;83:196202. DOIPubMedGoogle Scholar
  5. Popovich  KJ, Hota  B, Aroutcheva  A, Kurien  L, Patel  J, Lyles-Banks  R, et al. Community-associated methicillin-resistant Staphylococcus aureus colonization burden in HIV-infected patients. Clin Infect Dis. 2013;56:106774. DOIPubMedGoogle Scholar
  6. Aral  SO, Leichliter  JS, Blanchard  JF. Overview: the role of emergent properties of complex systems in the epidemiology and prevention of sexually transmitted infections including HIV infection. Sex Transm Infect. 2010;86(Suppl 3):iii13. DOIPubMedGoogle Scholar
  7. Morris  M, Goodreau  S, Moody  J. Sexual networks, concurrency, and STD/HIV. In: Holmes KK, editor. Sexually transmitted diseases. 4th ed. New York: McGraw-Hill Medical; 2008. p. 109–127
  8. Ghani  AC, Swinton  J, Garnett  GP. The role of sexual partnership networks in the epidemiology of gonorrhea. Sex Transm Dis. 1997;24:4556. DOIPubMedGoogle Scholar
  9. Kenyon  C. Strong associations between national prevalence of various STIs suggests sexual network connectivity is a common underpinning risk factor. BMC Infect Dis. 2017;17:682. DOIPubMedGoogle Scholar
  10. Aral  SO. Determinants of STD epidemics: implications for phase appropriate intervention strategies. Sex Transm Infect. 2002;78(Suppl 1):i313. DOIPubMedGoogle Scholar
  11. Fenton  KA, Imrie  J. Increasing rates of sexually transmitted diseases in homosexual men in Western europe and the United States: why? Infect Dis Clin North Am. 2005;19:31131. DOIPubMedGoogle Scholar
  12. Truong  HM, Kellogg  T, Klausner  JD, Katz  MH, Dilley  J, Knapper  K, et al. Increases in sexually transmitted infections and sexual risk behaviour without a concurrent increase in HIV incidence among men who have sex with men in San Francisco: a suggestion of HIV serosorting? [Erratum in: Sex Transm Infect. 2007;83:76]. Sex Transm Infect. 2006;82:4616. DOIPubMedGoogle Scholar
  13. The EMIS Network. EMIS 2010: The European Men-Who-Have-Sex-With-Men Internet Survey. Findings from 38 countries. Stockholm: European Centre for Disease Prevention and Control; 2013.
  14. Glick  SN, Morris  M, Foxman  B, Aral  SO, Manhart  LE, Holmes  KK, et al. A comparison of sexual behavior patterns among men who have sex with men and heterosexual men and women. J Acquir Immune Defic Syndr. 2012;60:8390. DOIPubMedGoogle Scholar
  15. Grant  RM, Lama  JR, Anderson  PL, McMahan  V, Liu  AY, Vargas  L, et al.; iPrEx Study Team. Preexposure chemoprophylaxis for HIV prevention in men who have sex with men. N Engl J Med. 2010;363:258799. DOIPubMedGoogle Scholar
  16. Sonnenberg  P, Clifton  S, Beddows  S, Field  N, Soldan  K, Tanton  C, et al. Prevalence, risk factors, and uptake of interventions for sexually transmitted infections in Britain: findings from the National Surveys of Sexual Attitudes and Lifestyles (Natsal). Lancet. 2013;382:1795806. DOIPubMedGoogle Scholar
  17. Cantas  L, Shah  SQ, Cavaco  LM, Manaia  CM, Walsh  F, Popowska  M, et al. A brief multi-disciplinary review on antimicrobial resistance in medicine and its linkage to the global environmental microbiota. Front Microbiol. 2013;4:96. DOIPubMedGoogle Scholar
  18. Lipsitch  M, Samore  MH. Antimicrobial use and antimicrobial resistance: a population perspective. Emerg Infect Dis. 2002;8:34754. DOIPubMedGoogle Scholar
  19. Unemo  M, Shafer  WM. Antimicrobial resistance in Neisseria gonorrhoeae in the 21st century: past, evolution, and future. Clin Microbiol Rev. 2014;27:587613. DOIPubMedGoogle Scholar
  20. Wi  T, Lahra  MM, Ndowa  F, Bala  M, Dillon  JR, Ramon-Pardo  P, et al. Antimicrobial resistance in Neisseria gonorrhoeae: Global surveillance and a call for international collaborative action. PLoS Med. 2017;14:e1002344. DOIPubMedGoogle Scholar
  21. Goossens  H, Ferech  M, Vander Stichele  R, Elseviers  M; ESAC Project Group. Outpatient antibiotic use in Europe and association with resistance: a cross-national database study. Lancet. 2005;365:57987. DOIPubMedGoogle Scholar
  22. Bauer  HM, Mark  KE, Samuel  M, Wang  SA, Weismuller  P, Moore  D, et al. Prevalence of and associated risk factors for fluoroquinolone-resistant Neisseria gonorrhoeae in California, 2000-2003. Clin Infect Dis. 2005;41:795803. DOIPubMedGoogle Scholar
  23. Wind  CM, de Vries  E, Schim van der Loeff  MF, van Rooijen  MS, van Dam  AP, Demczuk  WHB, et al. Decreased azithromycin susceptibility of Neisseria gonorrhoeae isolates in patients recently treated with azithromycin. Clin Infect Dis. 2017;65:3745. DOIPubMedGoogle Scholar
  24. Ito  M, Deguchi  T, Mizutani  KS, Yasuda  M, Yokoi  S, Ito  S, et al. Emergence and spread of Neisseria gonorrhoeae clinical isolates harboring mosaic-like structure of penicillin-binding protein 2 in Central Japan. Antimicrob Agents Chemother. 2005;49:13743. DOIPubMedGoogle Scholar
  25. Malhotra-Kumar  S, Lammens  C, Coenen  S, Van Herck  K, Goossens  H. Effect of azithromycin and clarithromycin therapy on pharyngeal carriage of macrolide-resistant streptococci in healthy volunteers: a randomised, double-blind, placebo-controlled study. Lancet. 2007;369:48290. DOIPubMedGoogle Scholar
  26. Jakobsson  HE, Jernberg  C, Andersson  AF, Sjölund-Karlsson  M, Jansson  JK, Engstrand  L. Short-term antibiotic treatment has differing long-term impacts on the human throat and gut microbiome. PLoS One. 2010;5:e9836. DOIPubMedGoogle Scholar
  27. Fung  M, Scott  KC, Kent  CK, Klausner  JD. Chlamydial and gonococcal reinfection among men: a systematic review of data to evaluate the need for retesting. Sex Transm Infect. 2007;83:3049. DOIPubMedGoogle Scholar
  28. Hamilton  HL, Dillard  JP. Natural transformation of Neisseria gonorrhoeae: from DNA donation to homologous recombination. Mol Microbiol. 2006;59:37685. DOIPubMedGoogle Scholar
  29. Midtlyng  PJ, Grave  K, Horsberg  TE. What has been done to minimize the use of antibacterial and antiparasitic drugs in Norwegian aquaculture? Aquacult Res. 2011;42:2834. DOIGoogle Scholar
  30. Liu  YJ, Rosten  TW, Henriksen  K, Hognes  ES, Summerfelt  S, Vinci  B. Comparative economic performance and carbon footprint of two farming models for producing Atlantic salmon (Salmo salar): Land-based closed containment system in freshwater and open net pen in seawater. Aquacult Eng. 2016;71:112. DOIGoogle Scholar
  31. Cabello  FC, Godfrey  HP, Tomova  A, Ivanova  L, Dölz  H, Millanao  A, et al. Antimicrobial use in aquaculture re-examined: its relevance to antimicrobial resistance and to animal and human health. Environ Microbiol. 2013;15:191742. DOIPubMedGoogle Scholar
  32. Kirkcaldy  RD, Bartoces  MG, Soge  OO, Riedel  S, Kubin  G, Del Rio  C, et al. Antimicrobial drug prescription and Neisseria gonorrhoeae susceptibility, United States, 2005–2013. Emerg Infect Dis. 2017;23:165763. DOIPubMedGoogle Scholar
  33. Workowski  KA. Centers for Disease Control and Prevention sexually transmitted diseases treatment guidelines. Clin Infect Dis. 2015;61(Suppl 8):S75962. DOIPubMedGoogle Scholar
  34. LeFevre  ML; U.S. Preventive Services Task Force. Screening for chlamydia and gonorrhea: U.S. Preventive Services Task Force recommendation statement. Ann Intern Med. 2014;161:90210. DOIPubMedGoogle Scholar
  35. Marcus  JL, Hurley  LB, Hare  CB, Nguyen  DP, Phengrasamy  T, Silverberg  MJ, et al. Preexposure prophylaxis for HIV prevention in a large integrated health care system: adherence, renal safety, and discontinuation. J Acquir Immune Defic Syndr. 2016;73:5406. DOIPubMedGoogle Scholar
  36. Tsoumanis  A, Hens  N, Kenyon  C. Do screening programmes for chlamydia and gonorrhea in men who have sex with men reduce the prevalence of these infections? A systematic review of observational studies. Sex Transm Dis. 2018. In press. DOIGoogle Scholar
  37. Buyze  J, Vanden Berghe  W, Hens  N, Kenyon  C. Current levels of gonorrhoea screening in MSM in Belgium may have little effect on prevalence: a modelling study. Epidemiol Infect. 2018;146:3338. DOIPubMedGoogle Scholar
  38. Jenness  SM, Weiss  KM, Goodreau  SM, Gift  T, Chesson  H, Hoover  KW, et al. Incidence of gonorrhea and chlamydia following HIV preexposure prophylaxis among men who have sex with men: a modeling study. Clin Infect Dis. 2017;65:7128. DOIPubMedGoogle Scholar
  39. World Health Organization. Global action plan to control the spread and impact of antimicrobial resistance in Neisseria gonorrhoeae. Geneva: The Organization; 2012.
  40. von Wintersdorff  CJH, Penders  J, van Niekerk  JM, Mills  ND, Majumder  S, van Alphen  LB, et al. Dissemination of antimicrobial resistance in microbial ecosystems through horizontal gene transfer. Front Microbiol. 2016;7:173. DOIPubMedGoogle Scholar
  41. Fingerhuth  SM, Bonhoeffer  S, Low  N, Althaus  CL. Antibiotic-resistant Neisseria gonorrhoeae spread faster with more treatment, not more sexual partners. PLoS Pathog. 2016;12:e1005611. DOIPubMedGoogle Scholar
  42. Chan  CH, McCabe  CJ, Fisman  DN. Core groups, antimicrobial resistance and rebound in gonorrhoea in North America. Sex Transm Infect. 2012;88:2004. DOIPubMedGoogle Scholar
  43. Public Health England. Surveillance of antimicrobial resistance in Neisseria gonorrhoeae: key findings from the Gonococcal Resistance to Antimicrobials Surveillance Programme (GRASP) and related surveillance data. London: Public Health England; 2015.
  44. Workgroup  AGP; A2058G Prevalence Workgroup. Prevalence of the 23S rRNA A2058G point mutation and molecular subtypes in Treponema pallidum in the United States, 2007 to 2009. Sex Transm Dis. 2012;39:7948.PubMedGoogle Scholar
  45. Read  P, Jeoffreys  N, Tagg  K, Guy  RJ, Gilbert  GL, Donovan  B. Azithromycin-resistant syphilis-causing strains in Sydney, Australia: prevalence and risk factors. J Clin Microbiol. 2014;52:277681. DOIPubMedGoogle Scholar
  46. Read  TR, Fairley  CK, Tabrizi  SN, Bissessor  M, Vodstrcil  L, Chow  EP, et al. Azithromycin 1.5g over 5 days compared to 1g single dose in urethral Mycoplasma genitalium: impact on treatment outcome and resistance. Clin Infect Dis. 2017;64:2506. DOIPubMedGoogle Scholar
  47. Baker  KS, Dallman  TJ, Ashton  PM, Day  M, Hughes  G, Crook  PD, et al. Intercontinental dissemination of azithromycin-resistant shigellosis through sexual transmission: a cross-sectional study. Lancet Infect Dis. 2015;15:91321. DOIPubMedGoogle Scholar
  48. Gaudreau  C, Rodrigues-Coutlée  S, Pilon  PA, Coutlée  F, Bekal  S. Long-lasting outbreak of erythromycin- and ciprofloxacin-resistant Campylobacter jejuni subspecies jejuni from 2003 to 2013 in men who have sex with men, Quebec, Canada. Clin Infect Dis. 2015;61:154952. DOIPubMedGoogle Scholar
  49. Diep  BA, Chambers  HF, Graber  CJ, Szumowski  JD, Miller  LG, Han  LL, et al. Emergence of multidrug-resistant, community-associated, methicillin-resistant Staphylococcus aureus clone USA300 in men who have sex with men. Ann Intern Med. 2008;148:24957. DOIPubMedGoogle Scholar
  50. Baquero  F, Coque  TM, Cantón  R. Allodemics. Lancet Infect Dis. 2002;2:5912. DOIPubMedGoogle Scholar

Main Article

Page created: June 18, 2018
Page updated: June 18, 2018
Page reviewed: June 18, 2018
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.
file_external