Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 24, Number 8—August 2018
CME ACTIVITY - Research

Ancylostoma ceylanicum Hookworm in Myanmar Refugees, Thailand, 2012–2015

Elise M. O’ConnellComments to Author , Tarissa Mitchell, Marina Papaiakovou, Nils Pilotte, Deborah Lee, Michelle Weinberg, Potsawin Sakulrak, Dilok Tongsukh, Georgiette Oduro-Boateng, Sarah Harrison, Steven A. Williams, William M. Stauffer1, and Thomas B. Nutman1
Author affiliations: National Institutes of Health, Bethesda, Maryland, USA (E.M. O’Connell, G. Oduro-Boateng, S. Harrison, T.B. Nutman); Centers for Disease Control and Prevention, Atlanta, Georgia, USA (T. Mitchell, D. Lee, M. Weinberg, W.M. Stauffer); Smith College, Northampton, Massachusetts, USA (M. Papaiakovou, N. Pilotte, S.A. Williams); University of Massachusetts, Amherst, Masschusetts, USA (N. Pilotte, S.A. Williams); International Organization for Migration, Mae Sot, Thailand (P. Sakulrak, D. Tongsukh); University of Minnesota Medical School, Minneapolis, Minnesota, USA (W.M. Stauffer)

Main Article

Table 1

Primer-probe sets used to determine genotypes of hookworms present in US-bound Myanmar refugees in camps along Myanmar–Thailand border, Thailand, 2012–2015*

Genome target/primer-probe set name, sequence type Sequence Final concentration, nmol/L Reference
ITS2/Ad1 (23)
Forward primer 5′-GAATGACAGCAAACTCGTTGTTG-3′ 900
Reverse primer 5′-ATACTAGCCACTGCCGAAACGT-3′ 900
Probe
5′-ATCGTTTACCGACTTTAG-3′
250

Repetitive element/Ad2 (24)
Forward primer 5′-GTATTTCACTCATATGATCGAGTGTTC-3′ 900
Reverse primer 5′-GTTTGAATTTGAGGTATTTCGACCA-3′ 900
Probe
5′-TGACAGTGTGTCATACTGTGGAAA-3′
250
Repetitive element/Ac (25)
Forward primer 5′-CAAATATTACTGTGCGCATTTAGC-3′ 900
Reverse primer 5′-GCGAATATTTAGTGGGTTTACTGG-3′ 900
Probe
5′-CGGTGAAAGCTTTGCGTTATTGCGA-3′
250
Repetitive element/Na (24)
Forward primer 5′-CCAGAATCGCCACAAATTGTAT-3′ 900
Reverse primer 5′-GGGTTTGAGGCTTATCATAAAGAA-3′ 900
Probe
5′-CCCGATTTGAGCTGAATTGTCAAA-3′
250
SNP200 This paper
Forward primer 5′-AATGCTACACTCTCTGTTCACCAGTT-3′ 900
Reverse primer 5′-CGGAAGCAGATATCATACAAAGCTT-3′ 900
Wild-type FAM probe/mutant VIC probe†
5′-AATACAGATGAGACCT(T/A)CT-3′
166; 231
SNP167 This paper
Forward primer 5′-TCGGGAAGAATACCCTGATAGAAT-3′ 900
Reverse primer 5′-CTTTTGCTCTTATTTCCATCAATAGGA-3′ 900
Wild-type FAM probe/mutant VIC probe† 5′-TGTCCTCGT(T/A)TTCC-3′ 125; 350

*Ac, Ancylostoma ceylanicum set; Ad1, A. duodenale set 1; Ad2, A. duodenale set 2; ITS2, internal transcribed spacer 2; Na, Necator americanus set; SNP, single-nucleotide polymorphism.
†FAM and VIC probes (Integrated DNA Technologies, Skokie, IL, USA).

Main Article

References
  1. Vos  T, Allen  C, Arora  M, Barber  RM, Bhutta  ZA, Brown  A, et al.; GBD 2015 Disease and Injury Incidence and Prevalence Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990-2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet. 2016;388:1545602. DOIPubMedGoogle Scholar
  2. Papier  K, Williams  GM, Luceres-Catubig  R, Ahmed  F, Olveda  RM, McManus  DP, et al. Childhood malnutrition and parasitic helminth interactions. Clin Infect Dis. 2014;59:23443. DOIPubMedGoogle Scholar
  3. Jonker  FA, Calis  JC, Phiri  K, Brienen  EA, Khoffi  H, Brabin  BJ, et al. Real-time PCR demonstrates Ancylostoma duodenale is a key factor in the etiology of severe anemia and iron deficiency in Malawian pre-school children. PLoS Negl Trop Dis. 2012;6:e1555. DOIPubMedGoogle Scholar
  4. Hoagland  KE, Schad  GA. Necator americanus and Ancylostoma duodenale: life history parameters and epidemiological implications of two sympatric hookworms of humans. Exp Parasitol. 1978;44:3649. DOIPubMedGoogle Scholar
  5. Mahdy  MA, Lim  YA, Ngui  R, Siti Fatimah  MR, Choy  SH, Yap  NJ, et al. Prevalence and zoonotic potential of canine hookworms in Malaysia. Parasit Vectors. 2012;5:88. DOIPubMedGoogle Scholar
  6. Liu  Y, Zheng  G, Alsarakibi  M, Zhang  X, Hu  W, Lu  P, et al. Molecular identification of Ancylostoma caninum isolated from cats in southern China based on complete ITS sequence. BioMed Res Int. 2013;2013:868050. DOIPubMedGoogle Scholar
  7. Pumidonming  W, Salman  D, Gronsang  D, Abdelbaset  AE, Sangkaeo  K, Kawazu  SI, et al. Prevalence of gastrointestinal helminth parasites of zoonotic significance in dogs and cats in lower Northern Thailand. J Vet Med Sci. 2017;78:177984. DOIPubMedGoogle Scholar
  8. Hu  W, Yu  XG, Wu  S, Tan  LP, Song  MR, Abdulahi  AY, et al. Levels of Ancylostoma infections and phylogenetic analysis of cox 1 gene of A. ceylanicum in stray cat faecal samples from Guangzhou, China. J Helminthol. 2016;90:3927. DOIPubMedGoogle Scholar
  9. Smout  FA, Skerratt  LF, Butler  JRA, Johnson  CN, Congdon  BC, Thompson  RCA. The hookworm Ancylostoma ceylanicum: An emerging public health risk in Australian tropical rainforests and Indigenous communities. One Health. 2017;3:669. DOIPubMedGoogle Scholar
  10. Phosuk  I, Intapan  PM, Thanchomnang  T, Sanpool  O, Janwan  P, Laummaunwai  P, et al. Molecular detection of Ancylostoma duodenale, Ancylostoma ceylanicum, and Necator americanus in humans in northeastern and southern Thailand. Korean J Parasitol. 2013;51:7479. DOIPubMedGoogle Scholar
  11. Pa Pa Aung  W, Htoon  TT, Tin  HH, Sanpool  O, Jongthawin  J, Sadaow  L, et al. First molecular identifications of Necator americanus and Ancylostoma ceylanicum infecting rural communities in lower Myanmar. Am J Trop Med Hyg. 2017;96:2146. DOIPubMedGoogle Scholar
  12. Bradbury  RS, Hii  SF, Harrington  H, Speare  R, Traub  R. Ancylostoma ceylanicum Hookworm in the Solomon Islands. Emerg Infect Dis. 2017;23:2527. DOIPubMedGoogle Scholar
  13. Ngui  R, Ching  LS, Kai  TT, Roslan  MA, Lim  YA. Molecular identification of human hookworm infections in economically disadvantaged communities in Peninsular Malaysia. Am J Trop Med Hyg. 2012;86:83742. DOIPubMedGoogle Scholar
  14. Jia  TW, Melville  S, Utzinger  J, King  CH, Zhou  XN. Soil-transmitted helminth reinfection after drug treatment: a systematic review and meta-analysis. PLoS Negl Trop Dis. 2012;6:e1621. DOIPubMedGoogle Scholar
  15. Furtado  LF, Bello  AC, dos Santos  HA, Carvalho  MR, Rabelo  EM. First identification of the F200Y SNP in the β-tubulin gene linked to benzimidazole resistance in Ancylostoma caninum. Vet Parasitol. 2014;206:3136. DOIPubMedGoogle Scholar
  16. Albonico  M, Wright  V, Bickle  Q. Molecular analysis of the β-tubulin gene of human hookworms as a basis for possible benzimidazole resistance on Pemba Island. Mol Biochem Parasitol. 2004;134:2814. DOIPubMedGoogle Scholar
  17. Demeler  J, Krüger  N, Krücken  J, von der Heyden  VC, Ramünke  S, Küttler  U, et al. Phylogenetic characterization of β-tubulins and development of pyrosequencing assays for benzimidazole resistance in cattle nematodes. PLoS One. 2013;8:e70212. DOIPubMedGoogle Scholar
  18. Hansen  TV, Thamsborg  SM, Olsen  A, Prichard  RK, Nejsum  P. Genetic variations in the beta-tubulin gene and the internal transcribed spacer 2 region of Trichuris species from man and baboons. Parasit Vectors. 2013;6:236. DOIPubMedGoogle Scholar
  19. Schwenkenbecher  JM, Albonico  M, Bickle  Q, Kaplan  RM. Characterization of beta-tubulin genes in hookworms and investigation of resistance-associated mutations using real-time PCR. Mol Biochem Parasitol. 2007;156:16774. DOIPubMedGoogle Scholar
  20. Diawara  A, Halpenny  CM, Churcher  TS, Mwandawiro  C, Kihara  J, Kaplan  RM, et al. Association between response to albendazole treatment and β-tubulin genotype frequencies in soil-transmitted helminths. PLoS Negl Trop Dis. 2013;7:e2247. DOIPubMedGoogle Scholar
  21. Mitchell  T, Lee  D, Weinberg  M, Phares  C, James  N, Amornpaisarnloet  K, et al. Impact of enhanced health interventions for United States–bound refugees: evaluating best practices in migration health. Am J Trop Med Hyg. 2018;98:9208. DOIPubMedGoogle Scholar
  22. Easton  AV, Oliveira  RG, O’Connell  EM, Kepha  S, Mwandawiro  CS, Njenga  SM, et al. Multi-parallel qPCR provides increased sensitivity and diagnostic breadth for gastrointestinal parasites of humans: field-based inferences on the impact of mass deworming. Parasit Vectors. 2016;9:38. DOIPubMedGoogle Scholar
  23. Basuni  M, Muhi  J, Othman  N, Verweij  JJ, Ahmad  M, Miswan  N, et al. A pentaplex real-time polymerase chain reaction assay for detection of four species of soil-transmitted helminths. Am J Trop Med Hyg. 2011;84:33843. DOIPubMedGoogle Scholar
  24. Pilotte  N, Papaiakovou  M, Grant  JR, Bierwert  LA, Llewellyn  S, McCarthy  JS, et al. Improved PCR-based detection of soil transmitted helminth infections using a next-generation sequencing approach to assay design. PLoS Negl Trop Dis. 2016;10:e0004578. DOIPubMedGoogle Scholar
  25. Papaiakovou  M, Pilotte  N, Grant  JR, Traub  RJ, Llewellyn  S, McCarthy  JS, et al. A novel, species-specific, real-time PCR assay for the detection of the emerging zoonotic parasite Ancylostoma ceylanicum in human stool. PLoS Negl Trop Dis. 2017;11:e0005734. DOIPubMedGoogle Scholar
  26. George  S, Kaliappan  SP, Kattula  D, Roy  S, Geldhof  P, Kang  G, et al. Identification of Ancylostoma ceylanicum in children from a tribal community in Tamil Nadu, India using a semi-nested PCR-RFLP tool. Trans R Soc Trop Med Hyg. 2015;109:2835. DOIPubMedGoogle Scholar
  27. Lang  AH, Drexel  H, Geller-Rhomberg  S, Stark  N, Winder  T, Geiger  K, et al. Optimized allele-specific real-time PCR assays for the detection of common mutations in KRAS and BRAF. J Mol Diagn. 2011;13:238. DOIPubMedGoogle Scholar
  28. Makanga  JO, Christianto  A, Inazu  T. Allele-specific real-time polymerase chain reaction as a tool for urate transporter 1 mutation detection. Methods Mol Biol. 2015;1275:11725. DOIPubMedGoogle Scholar
  29. Tol  J, Dijkstra  JR, Vink-Börger  ME, Nagtegaal  ID, Punt  CJ, Van Krieken  JH, et al. High sensitivity of both sequencing and real-time PCR analysis of KRAS mutations in colorectal cancer tissue. J Cell Mol Med. 2010;14:212231. DOIPubMedGoogle Scholar
  30. Tulve  NS, Suggs  JC, McCurdy  T, Cohen Hubal  EA, Moya  J. Frequency of mouthing behavior in young children. J Expo Anal Environ Epidemiol. 2002;12:25964. DOIPubMedGoogle Scholar
  31. Mattioli  MC, Davis  J, Boehm  AB. Hand-to-mouth contacts result in greater ingestion of feces than dietary water consumption in Tanzania: a quantitative fecal exposure assessment model. Environ Sci Technol. 2015;49:191220. DOIPubMedGoogle Scholar
  32. Inpankaew  T, Schär  F, Dalsgaard  A, Khieu  V, Chimnoi  W, Chhoun  C, et al. High prevalence of Ancylostoma ceylanicum hookworm infections in humans, Cambodia, 2012. Emerg Infect Dis. 2014;20:97682. DOIPubMedGoogle Scholar
  33. Wijers  DJ, Smit  AM. Early symptoms after experimental infection of man with Ancylostoma braziliense var. ceylanicum. Trop Geogr Med. 1966;18:4852.PubMedGoogle Scholar
  34. Brunet  J, Lemoine  JP, Lefebvre  N, Denis  J, Pfaff  AW, Abou-Bacar  A, et al. Bloody diarrhea associated with hookworm infection in traveler returning to France from Myanmar. Emerg Infect Dis. 2015;21:18789. DOIPubMedGoogle Scholar
  35. Ngui  R, Lim  YA, Traub  R, Mahmud  R, Mistam  MS. Epidemiological and genetic data supporting the transmission of Ancylostoma ceylanicum among human and domestic animals. PLoS Negl Trop Dis. 2012;6:e1522. DOIPubMedGoogle Scholar
  36. Phares  CR, Date  K, Travers  P, Déglise  C, Wongjindanon  N, Ortega  L, et al. Mass vaccination with a two-dose oral cholera vaccine in a long-standing refugee camp, Thailand. Vaccine. 2016;34:12833. DOIPubMedGoogle Scholar
  37. Scott  JT, Diakhaté  M, Vereecken  K, Fall  A, Diop  M, Ly  A, et al. Human water contacts patterns in Schistosoma mansoni epidemic foci in northern Senegal change according to age, sex and place of residence, but are not related to intensity of infection. Trop Med Int Health. 2003;8:1008. DOIPubMedGoogle Scholar
  38. Sow  S, de Vlas  SJ, Stelma  F, Vereecken  K, Gryseels  B, Polman  K. The contribution of water contact behavior to the high Schistosoma mansoni Infection rates observed in the Senegal River Basin. BMC Infect Dis. 2011;11:198. DOIPubMedGoogle Scholar
  39. Mirfazaelian  A, Dadashzadeh  S, Rouini  MR. Effect of gender in the disposition of albendazole metabolites in humans. Eur J Clin Pharmacol. 2002;58:4038. DOIPubMedGoogle Scholar
  40. Hsu  YC, Lin  JT. Images in clinical medicine. Intestinal infestation with Ancylostoma ceylanicum. N Engl J Med. 2012;366:e20. DOIPubMedGoogle Scholar
  41. Traub  RJ. Ancylostoma ceylanicum, a re-emerging but neglected parasitic zoonosis. Int J Parasitol. 2013;43:100915. DOIPubMedGoogle Scholar
  42. Humphries  D, Simms  BT, Davey  D, Otchere  J, Quagraine  J, Terryah  S, et al. Hookworm infection among school age children in Kintampo north municipality, Ghana: nutritional risk factors and response to albendazole treatment. Am J Trop Med Hyg. 2013;89:5408. DOIPubMedGoogle Scholar
  43. Diawara  A, Schwenkenbecher  JM, Kaplan  RM, Prichard  RK. Molecular and biological diagnostic tests for monitoring benzimidazole resistance in human soil-transmitted helminths. Am J Trop Med Hyg. 2013;88:105261. DOIPubMedGoogle Scholar
  44. Pilotte  N, Papaiakovou  M, Grant  JR, Bierwert  LA, Llewellyn  S, McCarthy  JS, et al. Improved PCR-based detection of soil transmitted helminth infections using a next-generation sequencing approach to assay design. PLoS Negl Trop Dis. 2016;10:e0004578. DOIPubMedGoogle Scholar

Main Article

1These authors contributed equally to this article

Page created: July 11, 2018
Page updated: July 11, 2018
Page reviewed: July 11, 2018
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.
file_external