Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 25, Number 2—February 2019
Research

Epidemiologic and Ecologic Investigations of Monkeypox, Likouala Department, Republic of the Congo, 2017

Reena H. DoshiComments to Author , Sarah Anne J. Guagliardo, Jeffrey B. Doty, Angelie Dzabatou Babeaux, Audrey Matheny, Jillybeth Burgado, Michael B. Townsend, Clint N. Morgan, Panayampalli Subbian Satheshkumar, Nestor Ndakala, Therese Kanjingankolo, Lambert Kitembo, Jean Malekani, Lem’s Kalemba, Elisabeth Pukuta, Tobi N’kaya, Fabien Kangoula, Cynthia Moses, Andrea M. McCollum, Mary G. Reynolds, Jean-Vivien Mombouli, Yoshinori Nakazawa, and Brett W. Petersen
Author affiliations: Centers for Disease Control and Prevention, Atlanta, Georgia, USA (R.H. Doshi, S.A.J. Guagliardo, J.B. Doty, A. Matheny, J. Burgado, M.B. Townsend, C.N. Morgan, P.S. Satheshkumar, A.M. McCollum, M.G. Reynolds, Y. Nakazawa, B.W. Petersen); Ministry of Health, Brazzaville, Democratic Republic of the Congo (A.D. Babeaux, L. Kitembo, F. Kangoula, J.-V. Mombouli); Oak Ridge Institute for Science and Education, Centers for Disease Control and Prevention Fellowship Program, Oak Ridge, Tennessee, USA (A. Matheny, J. Burgado, C.N. Morgan); Centers for Disease Control and Prevention, Kinshasa, Democratic Republic of the Congo (N. Ndakala, T. Kanjingankolo, J.-V. Mombouli); University of Kinshasa, Kinshasa (J. Malekani, L. Kalemba); Institut Nationale de Recherche Biomedicale, Kinshasa (E. Pukuta); Ministere de l’Agriculture, de l’Elevage et de la Peche, Brazzaville (T. N’kaya); International Communication and Education Fund, Kinshasa (C. Moses)

Main Article

Figure 3

Bayesian majority rules consensus tree comparing sequences obtained from Cricetomys specimens collected in Likouala Department, Republic of the Congo, 2017 (boldface), with sequences from Olayemi et al. (31). Vertical black bars distinguish clades representing Cricetomys giant pouched rat species proposed by Olayemi et al. Tree was constructed on the basis of 2 independent runs, 5 million generations each, based on a 409-bp long fragment of the cytochrome B gene. Bayesian posterior probabilities

Figure 3. Bayesian majority rules consensus tree comparing sequences obtained from Cricetomys specimens collected in Likouala Department, Republic of the Congo, 2017 (boldface), with sequences from Olayemi et al. (31). Vertical black bars distinguish clades representing Cricetomys giant pouched rat species proposed by Olayemi et al. Tree was constructed on the basis of 2 independent runs, 5 million generations each, based on a 409-bp fragment of the cytochrome B gene. Bayesian posterior probabilities for each node are shown. Scale bar indicates nucleotide substitutions per site.

Main Article

References
  1. Breman  JG, Kalisa-Ruti , Steniowski  MV, Zanotto  E, Gromyko  AI, Arita  I. Human monkeypox, 1970-79. Bull World Health Organ. 1980;58:16582.PubMedGoogle Scholar
  2. Jezek  Z, Marennikova  SS, Mutumbo  M, Nakano  JH, Paluku  KM, Szczeniowski  M. Human monkeypox: a study of 2,510 contacts of 214 patients. J Infect Dis. 1986;154:5515. DOIPubMedGoogle Scholar
  3. Jezek  Z, Szczeniowski  M, Paluku  KM, Mutombo  M. Human monkeypox: clinical features of 282 patients. J Infect Dis. 1987;156:2938. DOIPubMedGoogle Scholar
  4. Damon  IK. Status of human monkeypox: clinical disease, epidemiology and research. Vaccine. 2011;29(Suppl 4):D549. DOIPubMedGoogle Scholar
  5. Edghill-Smith  Y, Golding  H, Manischewitz  J, King  LR, Scott  D, Bray  M, et al. Smallpox vaccine-induced antibodies are necessary and sufficient for protection against monkeypox virus. Nat Med. 2005;11:7407. DOIPubMedGoogle Scholar
  6. Rimoin  AW, Mulembakani  PM, Johnston  SC, Lloyd Smith  JO, Kisalu  NK, Kinkela  TL, et al. Major increase in human monkeypox incidence 30 years after smallpox vaccination campaigns cease in the Democratic Republic of Congo. Proc Natl Acad Sci U S A. 2010;107:162627. DOIPubMedGoogle Scholar
  7. Durski  KN, McCollum  AM, Nakazawa  Y, Petersen  BW, Reynolds  MG, Briand  S, et al. Emergence of Monkeypox - West and Central Africa, 1970-2017. MMWR Morb Mortal Wkly Rep. 2018;67:30610. DOIPubMedGoogle Scholar
  8. Yinka-Ogunleye  A, Aruna  O, Ogoina  D, Aworabhi  N, Eteng  W, Badaru  S, et al. Reemergence of human monkeypox in Nigeria, 2017. Emerg Infect Dis. 2018;24:114951. DOIPubMedGoogle Scholar
  9. Hutson  CL, Carroll  DS, Gallardo-Romero  N, Weiss  S, Clemmons  C, Hughes  CM, et al. Monkeypox disease transmission in an experimental setting: prairie dog animal model. PLoS One. 2011;6:e28295. DOIPubMedGoogle Scholar
  10. Reynolds  MG, Yorita  KL, Kuehnert  MJ, Davidson  WB, Huhn  GD, Holman  RC, et al. Clinical manifestations of human monkeypox influenced by route of infection. J Infect Dis. 2006;194:77380. DOIPubMedGoogle Scholar
  11. Jezek  Z, Fenner  F. Human monkeypox. Monographs in virology. Basel: Karger; 1988.
  12. Khodakevich  L, Jezek  Z, Kinzanzka  K. Isolation of monkeypox virus from wild squirrel infected in nature. Lancet. 1986;1:989. DOIPubMedGoogle Scholar
  13. Khodakevich  L, Szczeniowski  M, Manbu-ma-Disu , Jezek  Z, Marennikova  S, Nakano  J, et al. The role of squirrels in sustaining monkeypox virus transmission. Trop Geogr Med. 1987;39:11522.PubMedGoogle Scholar
  14. Khodakevich  L, Szczeniowski  M, Nambu-ma-Disu , Jezek  Z, Marennikova  S, Nakano  J, et al. Monkeypox virus in relation to the ecological features surrounding human settlements in Bumba zone, Zaire. Trop Geogr Med. 1987;39:5663.PubMedGoogle Scholar
  15. Doty  JB, Malekani  JM, Kalemba  LN, Stanley  WT, Monroe  BP, Nakazawa  YU, et al. Assessing monkeypox virus prevalence in small mammals at the human–animal interface in the Democratic Republic of the Congo. Viruses. 2017;9:E283. DOIPubMedGoogle Scholar
  16. Essbauer  S, Pfeffer  M, Meyer  H. Zoonotic poxviruses. Vet Microbiol. 2010;140:22936. DOIPubMedGoogle Scholar
  17. Radonić  A, Metzger  S, Dabrowski  PW, Couacy-Hymann  E, Schuenadel  L, Kurth  A, et al. Fatal monkeypox in wild-living sooty mangabey, Côte d’Ivoire, 2012. Emerg Infect Dis. 2014;20:100911. DOIPubMedGoogle Scholar
  18. Ellis  CK, Carroll  DS, Lash  RR, Peterson  AT, Damon  IK, Malekani  J, et al. Ecology and geography of human monkeypox case occurrences across Africa. J Wildl Dis. 2012;48:33547. DOIPubMedGoogle Scholar
  19. Jezek  Z, Grab  B, Szczeniowski  M, Paluku  KM, Mutombo  M. Clinico-epidemiological features of monkeypox patients with an animal or human source of infection. Bull World Health Organ. 1988;66:45964.PubMedGoogle Scholar
  20. Reynolds  MG, Emerson  GL, Pukuta  E, Karhemere  S, Muyembe  JJ, Bikindou  A, et al. Detection of human monkeypox in the Republic of the Congo following intensive community education. Am J Trop Med Hyg. 2013;88:9825. DOIPubMedGoogle Scholar
  21. Learned  LA, Reynolds  MG, Wassa  DW, Li  Y, Olson  VA, Karem  K, et al. Extended interhuman transmission of monkeypox in a hospital community in the Republic of the Congo, 2003. Am J Trop Med Hyg. 2005;73:42834. DOIPubMedGoogle Scholar
  22. Ministry of Economy, Territory Development and Integration, Centre National de la Statisque et des Études Economiques. Le RGPH-2007 en quelques chiffres. Brazzaville, Republic of Congo; 2010 [cited 2018 Apr 5]. http://www.cnsee.org/pdf/rgph2007pd.pdf
  23. Lederman  ER, Reynolds  MG, Karem  K, Braden  Z, Learned-Orozco  LA, Wassa-Wassa  D, et al. Prevalence of antibodies against orthopoxviruses among residents of Likouala region, Republic of Congo: evidence for monkeypox virus exposure. Am J Trop Med Hyg. 2007;77:11506. DOIPubMedGoogle Scholar
  24. MacNeil  A, Reynolds  MG, Carroll  DS, Karem  K, Braden  Z, Lash  R, et al. Monkeypox or varicella? Lessons from a rash outbreak investigation in the Republic of the Congo. Am J Trop Med Hyg. 2009;80:5037. DOIPubMedGoogle Scholar
  25. Karem  KL, Reynolds  M, Braden  Z, Lou  G, Bernard  N, Patton  J, et al. characterization of acute-phase humoral immunity to monkeypox: use of immunoglobulin M enzyme-linked immunosorbent assay for detection of monkeypox infection during the 2003 North American outbreak. Clin Diagn Lab Immunol. 2005;12:86772.PubMedGoogle Scholar
  26. Doshi  RH, Guagliardo  SAJ, Dzabatou-Babeaux  A, Likouayoulou  C, Ndakala  N, Moses  C, et al. Strengthening of surveillance during monkeypox outbreak, Republic of the Congo, 2017. Emerg Infect Dis. 2018;24:115860. DOIPubMedGoogle Scholar
  27. Verhegghen  A, Mayaux  P, De Wasseige  C, Defourny  P. Mapping Congo Basin vegetation types from 300 m and 1 km multi-sensor time series for carbon stocks and forest areas estimation. Biogeosciences. 2012;9:506179. DOIGoogle Scholar
  28. Li  Y, Olson  VA, Laue  T, Laker  MT, Damon  IK. Detection of monkeypox virus with real-time PCR assays. J Clin Virol. 2006;36:194203. DOIPubMedGoogle Scholar
  29. Smith  MF, Patton  JL. The diversification of South American murid rodents: evidence from mitochondrial DNA sequence data for the akodontine tribe. Biol J Linn Soc Lond. 1993;50:14977. DOIGoogle Scholar
  30. Peppers  LL, Bradley  RD. Cryptic species in Sigmodon hispidus: evidence from DNA sequences. J Mammal. 2000;81:33243. DOIGoogle Scholar
  31. Olayemi  A, Nicolas  V, Hulselmans  J, Missoup  AD, Fichet-Calvet  E, Amundala  D, et al. Taxonomy of the African giant pouched rats (Nesomyidae: Cricetomys): molecular and craniometric evidence support an unexpected high species diversity. Zool J Linn Soc. 2012;165:70019. DOIGoogle Scholar
  32. Huelsenbeck  JP, Ronquist  F. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics. 2001;17:7545. DOIPubMedGoogle Scholar
  33. Ronquist  F, Huelsenbeck  JP. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics. 2003;19:15724. DOIPubMedGoogle Scholar
  34. Musser  GG. Superfamily Muroidea. In: Wilson DE, Reeder DM, editors. Mammal species of the world, 3rd edition. Baltimore: The Johns Hopkins University Press; 2005. p. 894–1531.
  35. Fine  PE, Jezek  Z, Grab  B, Dixon  H. The transmission potential of monkeypox virus in human populations. Int J Epidemiol. 1988;17:64350. DOIPubMedGoogle Scholar
  36. Jezek  Z, Grab  B, Dixon  H. Stochastic model for interhuman spread of monkeypox. Am J Epidemiol. 1987;126:108292. DOIPubMedGoogle Scholar
  37. Hutson  CL, Nakazawa  YJ, Self  J, Olson  VA, Regnery  RL, Braden  Z, et al. Laboratory investigations of African pouched rats (Cricetomys gambianus) as a potential reservoir host species for monkeypox virus. PLoS Negl Trop Dis. 2015;9:e0004013. DOIPubMedGoogle Scholar

Main Article

Page created: January 18, 2019
Page updated: January 18, 2019
Page reviewed: January 18, 2019
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.
file_external