Volume 25, Number 3—March 2019
Dispatch
In Vivo Selection of a Unique Tandem Repeat Mediated Azole Resistance Mechanism (TR120) in Aspergillus fumigatus cyp51A, Denmark
Table
Isolate no. | EUCAST-based susceptibility MICs, mg/L |
Sanger sequencing: Cyp51A profile§ | STRAf assay genotyping data:† 2A-2B-2C-3A-3B-3C-4A-4B-4C | WGS data:‡ SNP differences compared with P-1 | ||
---|---|---|---|---|---|---|
VRZ | ITZ | POS | ||||
P-1 | 1 | 0.5 | 0.125 | F46Y/M172V/E427K | 10–13–10–17–13–8–7–5–6 | 0 |
P-2 | 4 | 16 | 0.5 | TR120/F46Y/M172V/E427K | 10–13–10–17–13–8–7–5–6 | NA |
P-3 | 4 | >16 | 0.5 | TR120/F46Y/M172V/E427K | 10–13–10–17–13–8–7–5–6 | 41 |
SSI-5197 | 1 | 1 | 0.125 | F46Y/M172V/E427K | 10-15-10-28-13-11-7-5-6 | 4,968 |
SSI-7413 | 0.5 | 0.25 | 0.125 | WT | 21–25–19–28–12–6–20–10–8 | 105,900 |
Af293 (13) | 1 | 0.5 | 0.06 | F46Y/M172V/N248T/D255E/E427K | 26–18–18–46–21–23–11–10–8 | 102,727 |
SSI-5946 | 4 | >16 | 0.5 | TR34/L98H | 20–21–12–84–10–7–8–9–10 | 108,901 |
SSI-5717 | >4 | 0.5 | 0.25 | TR46/Y121F/T289A | 26–21–16–32–9–10–8–14–10 | 108,882 |
*ITZ, itraconazole; NA, not available; POS, posaconazole; SNP, single-nucleotide polymorphism; STRAf, short tandem repeat Aspergillus fumigatus; VRZ, voriconazole (isavuconazole MICs were equivalent, data not shown); WGS, whole-genome sequencing; WT, wild-type.
†STRAf genotyping was performed as previously described (3). Underlined STRAf markers are shared with P-1.
‡Reference genome coverage ranged from 88.5% to 90.93%. Sequencing depth based on all assembled contigs >1,000 bp ranged from 57.2× to 80.7×; 71.1× for P-1; and 66.3× for P-3.
§TR34: GAATCACGCGGTCCGGATGTGTGCTGAGCCGAAT, TR46: AGTTGTCTAGAATCACGCGGTCCGGATGTGTGCTGAGCCGAATGAA,
TR120: TTCTCCTCTAGAAAAAACTCATGAGTGAATAATCGCAGCACCACTCCAGAGTTGTCTAGAATCACGCGGTCCGGATGTGTGCTGAGCCGAATGAAAGTTGCCTAATTACTAAGGTGTAGT. GenBank accession numbers are MG972983 with TR120 and MG972984 without TR120.
References
- Meis JF, Chowdhary A, Rhodes JL, Fisher MC, Verweij PE. Clinical implications of globally emerging azole resistance in Aspergillus fumigatus. Philos Trans R Soc Lond B Biol Sci. 2016;371:20150460. DOIPubMedGoogle Scholar
- Subcommittee on Antifungal Susceptibility Testing of the ESCMID European Committee for Antimicrobial Susceptibility Testing. EUCAST Technical Note on the method for the determination of broth dilution minimum inhibitory concentrations of antifungal agents for conidia-forming moulds. Clin Microbiol Infect. 2008;14:982–4. DOIPubMedGoogle Scholar
- de Valk HA, Meis JF, Curfs IM, Muehlethaler K, Mouton JW, Klaassen CHW. Use of a novel panel of nine short tandem repeats for exact and high-resolution fingerprinting of Aspergillus fumigatus isolates. J Clin Microbiol. 2005;43:4112–20. DOIPubMedGoogle Scholar
- Ballard E, Melchers WJG, Zoll J, Brown AJP, Verweij PE, Warris A. In-host microevolution of Aspergillus fumigatus: A phenotypic and genotypic analysis. Fungal Genet Biol. 2018;113:1–13. DOIPubMedGoogle Scholar
- Sahl JW, Lemmer D, Travis J, Schupp JM, Gillece JD, Aziz M, et al. NASP: an accurate, rapid method for the identification of SNPs in WGS datasets that supports flexible input and output formats. Microb Genom. 2016;2:e000074.
- Delcher AL, Salzberg SL, Phillippy AM. Using MUMmer to identify similar regions in large sequence sets. Curr Protoc Bioinformatics 2003;00:10.3.1–10.3.18.
- Price MN, Dehal PS, Arkin AP. FastTree 2—approximately maximum-likelihood trees for large alignments. PLoS One. 2010;5:e9490. DOIPubMedGoogle Scholar
- Snelders E, Camps SMT, Karawajczyk A, Schaftenaar G, Kema GHJ, van der Lee HA, et al. Triazole fungicides can induce cross-resistance to medical triazoles in Aspergillus fumigatus. PLoS One. 2012;7:e31801. DOIPubMedGoogle Scholar
- Zhang J, Snelders E, Zwaan BJ, Schoustra SE, Meis JF, van Dijk K, et al. A novel environmental azole resistance mutation in Aspergillus fumigatus and a possible role of sexual reproduction in its emergence. MBio. 2017;8:e00791–17. DOIPubMedGoogle Scholar
- Abdolrasouli A, Rhodes J, Beale MA, Hagen F, Rogers TR, Chowdhary A, et al. Genomic context of azole resistance mutations in Aspergillus fumigatus determined using whole-genome sequencing. MBio. 2015;6:e00536.PubMedGoogle Scholar
- Verweij PE, Zhang J, Debets AJM, Meis JF, van de Veerdonk FL, Schoustra SE, et al. In-host adaptation and acquired triazole resistance in Aspergillus fumigatus: a dilemma for clinical management. Lancet Infect Dis. 2016;16:e251–60. DOIPubMedGoogle Scholar
- Snelders E, Karawajczyk A, Schaftenaar G, Verweij PE, Melchers WJG. Azole resistance profile of amino acid changes in Aspergillus fumigatus CYP51A based on protein homology modeling. Antimicrob Agents Chemother. 2010;54:2425–30. DOIPubMedGoogle Scholar
- Garcia-Rubio R, Alcazar-Fuoli L, Monteiro MC, Monzon S, Cuesta I, Pelaez T, et al. Insight into the significance of Aspergillus fumigatus cyp51A polymorphisms. Antimicrob Agents Chemother. 2018;62:e00241–18. DOIPubMedGoogle Scholar
- Snelders E, Camps SMT, Karawajczyk A, Rijs AJMM, Zoll J, Verweij PE, et al. Genotype-phenotype complexity of the TR46/Y121F/T289A cyp51A azole resistance mechanism in Aspergillus fumigatus. Fungal Genet Biol. 2015;82:129–35. DOIPubMedGoogle Scholar
- Gsaller F, Hortschansky P, Furukawa T, Carr PD, Rash B, Capilla J, et al. Sterol biosynthesis and azole tolerance is governed by the opposing actions of SrbA and the CCAAT binding complex. PLoS Pathog. 2016;12:e1005775. DOIPubMedGoogle Scholar