Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 26, Number 10—October 2020
Dispatch

Limitations of Ribotyping as Genotyping Method for Corynebacterium ulcerans

Tsuyoshi Sekizuka, Chihiro Katsukawa1, Makoto Kuroda, Keigo Shibayama, Ken Otsuji, Mitsumasa Saito, Akihiko Yamamoto, and Masaaki IwakiComments to Author 
Author affiliations: National Institute of Infectious Diseases, Tokyo, Japan (T. Sekizuka, M. Kuroda, K. Shibyama, A. Yamamoto, M. Iwaki); Osaka Prefectural Institute of Public Health, Osaka, Japan (C. Katsukawa); University of Occupational and Environmental Health, Kitakyushu, Japan (K. Otsuji, M. Saito)

Main Article

Figure 1

Alteration of ribotyping patterns by genomic DNA modification of Corynebacterium ulcerans strains 0102, 0211, and FH2016–1, Japan, 2001–2016. Ribotyping was performed as described previously (4,11). HindIII-digested, digoxigenin-labeled λ phage DNA segments were used as length markers. A) Conventional ribotyping patterns of strains 0102, 0211, and FH2016-1. 1, λHindIII; 2, 0102; 3, 0211; 4, FH2016-1; 5, Pattern predicted by in silico typing. B) Ribotyping patterns of genomic DNA and whole-genome amplified DNA as substrates. 1, λHindIII; 2, 0102 WGA; 3, 0102 native; 4, 0211 WGA; 5, 0211 native; 6, FH2016-1 WGA; 7, FH2016-1 native. The label “WGA” indicates whole-genome amplified DNA as a substrate; “native” indicates genomic DNA. WGA (unmodified) DNA of the 3 strains show identical patterns. The pattern matches that of native 0211 (unmodified genomic DNA). In contrast, native FH2016-1 and 0102 are modified and show different patterns from their WGA counterparts.

Figure 1. Alteration of ribotyping patterns by genomic DNA modification of Corynebacterium ulcerans strains 0102, 0211, and FH2016–1, Japan, 2001–2016. Ribotyping was performed as described previously (4,11). HindIII-digested, digoxigenin-labeled λ phage DNA segments were used as length markers. A) Conventional ribotyping patterns of strains 0102, 0211, and FH2016-1. 1, λHindIII; 2, 0102; 3, 0211; 4, FH2016-1; 5, Pattern predicted by in silico typing. B) Ribotyping patterns of genomic DNA and whole-genome amplified DNA as substrates. 1, λHindIII; 2, 0102 WGA; 3, 0102 native; 4, 0211 WGA; 5, 0211 native; 6, FH2016-1 WGA; 7, FH2016-1 native. The label “WGA” indicates whole-genome amplified DNA as a substrate; “native” indicates genomic DNA. WGA (unmodified) DNA of the 3 strains show identical patterns. The pattern matches that of native 0211 (unmodified genomic DNA). In contrast, native FH2016-1 and 0102 are modified and show different patterns from their WGA counterparts.

Main Article

References
  1. World Health Organization. Diphtheria. In: Vaccine preventable diseases surveillance standards. Geneva: The Organization; 2018.
  2. De Zoysa  A, Hawkey  P, Charlett  A, Efstratiou  A. Comparison of four molecular typing methods for characterization of Corynebacterium diphtheriae and determination of transcontinental spread of C. diphtheriae based on BstEII rRNA gene profiles. J Clin Microbiol. 2008;46:362635. DOIPubMedGoogle Scholar
  3. Grimont  PAD, Grimont  F, Efstratiou  A, De Zoysa  A, Mazurova  I, Ruckly  C, et al.; European Laboratory Working Group on Diphtheria. International nomenclature for Corynebacterium diphtheriae ribotypes. Res Microbiol. 2004;155:1626. DOIPubMedGoogle Scholar
  4. De Zoysa  A, Hawkey  PM, Engler  K, George  R, Mann  G, Reilly  W, et al. Characterization of toxigenic Corynebacterium ulcerans strains isolated from humans and domestic cats in the United Kingdom. J Clin Microbiol. 2005;43:437781. DOIPubMedGoogle Scholar
  5. Komiya  T, Seto  Y, De Zoysa  A, Iwaki  M, Hatanaka  A, Tsunoda  A, et al. Two Japanese Corynebacterium ulcerans isolates from the same hospital: ribotype, toxigenicity and serum antitoxin titre. J Med Microbiol. 2010;59:1497504. DOIPubMedGoogle Scholar
  6. Otsuji  K, Fukuda  K, Endo  T, Shimizu  S, Harayama  N, Ogawa  M, et al. The first fatal case of Corynebacterium ulcerans infection in Japan. JMM Case Rep. 2017;4:e005106. DOIPubMedGoogle Scholar
  7. Yasuda  I, Matsuyama  H, Ishifuji  T, Yamashita  Y, Takaki  M, Morimoto  K, et al. Severe pneumonia caused by toxigenic Corynebacterium ulcerans infection, Japan. Emerg Infect Dis. 2018;24:58891. DOIPubMedGoogle Scholar
  8. Katsukawa  C, Komiya  T, Umeda  K, Goto  M, Yanai  T, Takahashi  M, et al. Toxigenic Corynebacterium ulcerans isolated from a hunting dog and its diphtheria toxin antibody titer. Microbiol Immunol. 2016;60:17786. DOIPubMedGoogle Scholar
  9. Katsukawa  C, Umeda  K, Inamori  I, Kosono  Y, Tanigawa  T, Komiya  T, et al. Toxigenic Corynebacterium ulcerans isolated from a wild bird (ural owl) and its feed (shrew-moles): comparison of molecular types with human isolates. BMC Res Notes. 2016;9:181. DOIPubMedGoogle Scholar
  10. König  C, Meinel  DM, Margos  G, Konrad  R, Sing  A. Multilocus sequence typing of Corynebacterium ulcerans provides evidence for zoonotic transmission and for increased prevalence of certain sequence types among toxigenic strains. J Clin Microbiol. 2014;52:431824. DOIPubMedGoogle Scholar
  11. Hatanaka  A, Tsunoda  A, Okamoto  M, Ooe  K, Nakamura  A, Miyakoshi  M, et al. Corynebacterium ulcerans Diphtheria in Japan. Emerg Infect Dis. 2003;9:7523. DOIPubMedGoogle Scholar
  12. Sekizuka  T, Yamamoto  A, Komiya  T, Kenri  T, Takeuchi  F, Shibayama  K, et al. Corynebacterium ulcerans 0102 carries the gene encoding diphtheria toxin on a prophage different from the C. diphtheriae NCTC 13129 prophage. BMC Microbiol. 2012;12:72. DOIPubMedGoogle Scholar
  13. Regnault  B, Grimont  F, Grimont  PAD. Universal ribotyping method using a chemically labelled oligonucleotide probe mixture. Res Microbiol. 1997;148:64959. DOIPubMedGoogle Scholar
  14. Roberts  RJ, Vincze  T, Posfai  J, Macelis  D. REBASE—a database for DNA restriction and modification: enzymes, genes and genomes. Nucleic Acids Res. 2015;43(D1):D2989. DOIPubMedGoogle Scholar
  15. Nelson  JR. Random-primed, Phi29 DNA polymerase-based whole genome amplification. Curr Protoc Mol Biol. 2014;105:15.13.1.

Main Article

1Current affiliation: Osaka Prefecture University, Osaka, Japan.

Page created: July 28, 2020
Page updated: September 28, 2020
Page reviewed: September 28, 2020
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.
file_external