Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 26, Number 4—April 2020
Synopsis

Severe Dengue Epidemic, Sri Lanka, 2017

Hasitha A. TisseraComments to Author , Bernard D.W. Jayamanne, Rajendra Raut, Sakunthala M.D. Janaki, Yesim Tozan, Preshila C. Samaraweera, Prasad Liyanage, Azhar Ghouse, Chaturaka Rodrigo, Aravinda M. de Silva, and Sumadhya D. Fernando
Author affiliations: National Dengue Control Unit, Colombo, Sri Lanka (H.A. Tissera, B.D.W. Jayamanne, S.M.D. Janaki, P.C. Samaraweera); Central Epidemiology Unit, Colombo (H.A. Tissera, A. Ghouse); University of North Carolina, Chapel Hill, North Carolina, USA (R. Raut, A.M. de Silva); New York University, New York, New York, USA (Y. Tozan); Regional Directorate of Health Services, Kalutara, Sri Lanka (P. Liyanage); University of New South Wales Sydney, Sydney, New South Wales, Australia (C. Rodrigo); University of Colombo, Colombo (S.D. Fernando)

Main Article

Figure 4

Phylogenetic tree for 5 dengue virus 2 (DENV-2) isolates from late 2016 and 2017 dengue epidemic (arrows), Sri Lanka, and reference DENV-2 strains. The tree is based on a 1,485-nt fragment that encodes the envelope protein. Classification and naming of DENV-2 genotypes are based on (16). The evolutionary history was inferred using the neighbor-joining method (17). The optimal tree with the sum of branch length = 0.44012906 is shown. The tree is drawn to scale, with branch lengths in the same uni

Figure 4. Phylogenetic tree for 5 dengue virus 2 (DENV-2) isolates from late 2016 and 2017 dengue epidemic (arrows), Sri Lanka, and reference DENV-2 strains. The tree is based on a 1,485-nt fragment that encodes the envelope protein. Classification and naming of DENV-2 genotypes are based on (16). The evolutionary history was inferred using the neighbor-joining method (17). The optimal tree with the sum of branch length = 0.44012906 is shown. The tree is drawn to scale, with branch lengths in the same units as those of the evolutionary distances used to infer the phylogenetic tree. The evolutionary distances were computed using the maximum composite likelihood method (18) and are in the units of the number of base substitutions per site. This analysis involved 33-nt sequences. All ambiguous positions were removed for each sequence pair (pairwise deletion option). The final dataset comprised 1,485 positions. Evolutionary analyses were conducted in MEGA X (12). Scale bar indicates nucleotide substitutions per site.

Main Article

References
  1. Stanaway  JD, Shepard  DS, Undurraga  EA, Halasa  YA, Coffeng  LE, Brady  OJ, et al. The global burden of dengue: an analysis from the Global Burden of Disease Study 2013. Lancet Infect Dis. 2016;16:71223. DOIPubMedGoogle Scholar
  2. Bhatt  S, Gething  PW, Brady  OJ, Messina  JP, Farlow  AW, Moyes  CL, et al. The global distribution and burden of dengue. Nature. 2013;496:5047. DOIPubMedGoogle Scholar
  3. Department of Census & Statistics, Ministry of Policy Planning and Economic Affairs. Population by ethnicity and district according to Divisional Secretary's Division, 2012. In: Census of Population and Housing 2012—final report. Colombo (Sri Lanka): The Ministry; 2012 [cited 2018 May 15]. http://www.statistics.gov.lk/PopHouSat/CPH2011/Pages/Activities/Reports/FinalReport/FinalReportE.pdf
  4. Vitharana  T, Jayakuru  WS. Historical account of dengue haemorrhagic fever in Sri Lanka. WHO/SEARO. Dengue Bull. 1997;21:1178.
  5. Messer  WB, Vitarana  UT, Sivananthan  K, Elvtigala  J, Preethimala  LD, Ramesh  R, et al. Epidemiology of dengue in Sri Lanka before and after the emergence of epidemic dengue hemorrhagic fever. Am J Trop Med Hyg. 2002;66:76573. DOIPubMedGoogle Scholar
  6. Kulatilaka  TA, Jayakuru  WS. Control of dengue/dengue haemorrhagic fever in Sri Lanka. Dengue Bull. 1998;22:5361.
  7. Epidemiology Unit, Ministry of Health, Sri Lanka. Distribution of notification(H399) dengue cases by month [cited 2018 May 15]. http://www.epid.gov.lk/web/index.php?option=com_casesanddeaths&Itemid=448&lang=en#
  8. Tissera  H, Weeraman  J, Amarasinghe  A, Wijewickrama  A, Palihawadana  P, Fernando  L. Expediency of dengue illness classification: The Sri Lankan perspective. WHO South-East Asia J Public Health. 2014;3:57. DOIPubMedGoogle Scholar
  9. Tissera  H, Amarasinghe  A, Gunasena  S, DeSilva  AD, Yee  LW, Sessions  O, et al. Laboratory-enhanced dengue sentinel surveillance in Colombo district, Sri Lanka: 2012–2014. PLoS Negl Trop Dis. 2016;10:e0004477. DOIPubMedGoogle Scholar
  10. Department of Census and Statistics of Sri Lanka. Sri Lanka census of population and housing 2011. 2012 [cited 2016 Feb 26]. http://www.statistics.gov.lk/PopHouSat/CPH2011/index.php?fileName=Activities/TentativelistofPublications
  11. Kumar  S, Nei  M, Dudley  J, Tamura  K. MEGA: a biologist-centric software for evolutionary analysis of DNA and protein sequences. Brief Bioinform. 2008;9:299306. DOIPubMedGoogle Scholar
  12. World Health Organization. Vector surveillance [cited 2018 Dec 1]. https://www.who.int/denguecontrol/monitoring/vector_surveillance
  13. National Oceanic and Atmospheric Administration. Cold and warm episodes by season [cited 2018 Sep 15]. https://origin.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ONI_v5.php
  14. Gasparrini  A, Armstrong  B, Kenward  MG. Distributed lag non-linear models. Stat Med. 2010;29:222434. DOIPubMedGoogle Scholar
  15. R Development Core Team. R: a language and environment for statistical computing. Vienna (Austria): R Project; 2010.
  16. Waman  VP, Kolekar  P, Ramtirthkar  MR, Kale  MM, Kulkarni-Kale  U. Analysis of genotype diversity and evolution of Dengue virus serotype 2 using complete genomes. PeerJ. 2016;4:e2326. DOIPubMedGoogle Scholar
  17. Tamura  K, Nei  M, Kumar  S. Prospects for inferring very large phylogenies by using the neighbor-joining method. Proc Natl Acad Sci U S A. 2004;101:110305. DOIPubMedGoogle Scholar
  18. Tsuboi  M, Kutsuna  S, Maeki  T, Taniguchi  S, Tajima  S, Kato  F, et al. Dengue virus type 2 in travelers returning to Japan from Sri Lanka, 2017. Emerg Infect Dis. 2017;23:19313. DOIPubMedGoogle Scholar
  19. Saitou  N, Nei  M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987;4:40625.PubMedGoogle Scholar
  20. Moore  PR, van den Hurk  AF, Mackenzie  JS, Pyke  AT. Dengue viruses in Papua New Guinea: evidence of endemicity and phylogenetic variation, including the evolution of new genetic lineages. Emerg Microbes Infect. 2017;6:e114. DOIPubMedGoogle Scholar
  21. Gubler  DJ. Dengue, urbanization and globalization: the unholy trinity of the 21(st) century. Trop Med Health. 2011;39(Suppl):311. DOIPubMedGoogle Scholar
  22. Câmara  FP, Theophilo  RL, Dos Santos  GT, Pereira  SR, Câmara  DC, de Matos  RR. [Regional and dynamics characteristics of dengue in Brazil: a retrospective study] [in Portuguese]. Rev Soc Bras Med Trop. 2007;40:1926.PubMedGoogle Scholar
  23. Barreto  FR, Teixeira  MG, Costa  MC, Carvalho  MS, Barreto  ML. Spread pattern of the first dengue epidemic in the city of Salvador, Brazil. BMC Public Health. 2008;8:51. DOIPubMedGoogle Scholar
  24. Li  Y, Kamara  F, Zhou  G, Puthiyakunnon  S, Li  C, Liu  Y, et al. Urbanization increases Aedes albopictus larval habitats and accelerates mosquito development and survivorship. PLoS Negl Trop Dis. 2014;8:e3301. DOIPubMedGoogle Scholar
  25. Sirisena  P, Noordeen  F, Kurukulasuriya  H, Romesh  TA, Fernando  L. Effect of climatic factors and population density on the distribution of dengue in Sri Lanka: a GIS based evaluation for prediction of outbreaks. PLoS One. 2017;12:e0166806. DOIPubMedGoogle Scholar
  26. Schmidt  WP, Suzuki  M, Thiem  VD, White  RG, Tsuzuki  A, Yoshida  LM, et al. Population density, water supply, and the risk of dengue fever in Vietnam: cohort study and spatial analysis. PLoS Med. 2011;8:e1001082. DOIPubMedGoogle Scholar
  27. Thai  KT, Nishiura  H, Hoang  PL, Tran  NT, Phan  GT, Le  HQ, et al. Age-specificity of clinical dengue during primary and secondary infections. PLoS Negl Trop Dis. 2011;5:e1180. DOIPubMedGoogle Scholar
  28. Halstead  SB. Neutralization and antibody-dependent enhancement of dengue viruses. Adv Virus Res. 2003;60:42167. DOIPubMedGoogle Scholar
  29. Tissera  H, Amarasinghe  A, De Silva  AD, Kariyawasam  P, Corbett  KS, Katzelnick  L, et al. Burden of dengue infection and disease in a pediatric cohort in urban Sri Lanka. Am J Trop Med Hyg. 2014;91:1327. DOIPubMedGoogle Scholar
  30. Wilder-Smith  A, Schwartz  E. Dengue in travelers. N Engl J Med. 2005;353:92432. DOIPubMedGoogle Scholar
  31. Hsu  JC, Hsieh  CL, Lu  CY. Trend and geographic analysis of the prevalence of dengue in Taiwan, 2010-2015. Int J Infect Dis. 2017;54:439. DOIPubMedGoogle Scholar
  32. Rajarethinam  J, Ang  L-W, Ong  J, Ycasas  J, Hapuarachchi  HC, Yap  G, et al. Dengue in Singapore from 2004 to 2016: cyclical epidemic patterns dominated by serotypes 1 and 2. Am J Trop Med Hyg. 2018;99:20410. DOIPubMedGoogle Scholar
  33. Ooi  EE, Goh  KT, Gubler  DJ. Dengue prevention and 35 years of vector control in Singapore. Emerg Infect Dis. 2006;12:88793. DOIPubMedGoogle Scholar
  34. Shastri  J, Williamson  M, Vaidya  N, Agrawal  S, Shrivastav  O. Nine year trends of dengue virus infection in Mumbai, Western India. J Lab Physicians. 2017;9:296302. DOIPubMedGoogle Scholar
  35. Teixeira  MG, Costa  MCN, Coelho  G, Barreto  ML. Recent shift in age pattern of dengue hemorrhagic fever, Brazil. Emerg Infect Dis. 2008;14:1663. DOIPubMedGoogle Scholar
  36. Hapuarachchi  HC, Koo  C, Rajarethinam  J, Chong  C-S, Lin  C, Yap  G, et al. Epidemic resurgence of dengue fever in Singapore in 2013-2014: A virological and entomological perspective. BMC Infect Dis. 2016;16:300. DOIPubMedGoogle Scholar
  37. Rodriguez-Roche  R, Blanc  H, Bordería  AV, Díaz  G, Henningsson  R, Gonzalez  D, et al. Increasing clinical severity during a dengue virus type 3 Cuban epidemic: deep sequencing of evolving viral populations. J Virol. 2016;90:432033. DOIPubMedGoogle Scholar
  38. Lee  K-S, Lo  S, Tan  SS-Y, Chua  R, Tan  L-K, Xu  H, et al. Dengue virus surveillance in Singapore reveals high viral diversity through multiple introductions and in situ evolution. Infect Genet Evol. 2012;12:7785. DOIPubMedGoogle Scholar
  39. Kanakaratne  N, Wahala  WM, Messer  WB, Tissera  HA, Shahani  A, Abeysinghe  N, et al. Severe dengue epidemics in Sri Lanka, 2003-2006. Emerg Infect Dis. 2009;15:1929. DOIPubMedGoogle Scholar
  40. Tissera  HA, Ooi  EE, Gubler  DJ, Tan  Y, Logendra  B, Wahala  WM, et al. New dengue virus type 1 genotype in Colombo, Sri Lanka. Emerg Infect Dis. 2011;17:20535. DOIPubMedGoogle Scholar
  41. Uehara  A, Tissera  HA, Bodinayake  CK, Amarasinghe  A, Nagahawatte  A, Tillekeratne  LG, et al. Analysis of dengue serotype 4 in Sri Lanka during the 2012–2013 dengue epidemic. Am J Trop Med Hyg. 2017;97:1306. DOIPubMedGoogle Scholar
  42. Tissera  HA, Samaraweera  PC, Jayamanne  BDW, Janaki  MDS, U Chulasiri  MPP, Rodrigo  C, et al. Use of Bacillus thuringiensis israelensis in integrated vector control of Aedes sp. in Sri Lanka: a prospective controlled effectiveness study. Trop Med Int Health. 2018;23:22935. DOIPubMedGoogle Scholar
  43. Thalagala  N, Tissera  H, Palihawadana  P, Amarasinghe  A, Ambagahawita  A, Wilder-Smith  A, et al. Costs of dengue control activities and hospitalizations in the public health sector during an epidemic year in urban Sri Lanka. PLoS Negl Trop Dis. 2016;10:e0004466. DOIPubMedGoogle Scholar

Main Article

Page created: March 17, 2020
Page updated: March 17, 2020
Page reviewed: March 17, 2020
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.
file_external