Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 26, Number 6—June 2020
Research

Zoonotic Alphaviruses in Fatal and Neurologic Infections in Wildlife and Nonequine Domestic Animals, South Africa

Jumari Steyn, Isabel Fourie, Johan Steyl, June Williams, Voula Stivaktas, Elizabeth Botha, Stefanie van Niekerk, Bjorn Reininghaus, and Marietjie VenterComments to Author 
Author affiliations: University of Pretoria, Pretoria, South Africa (J. Steyn, I. Fourie, J. Steyl, J. Williams, V. Stivaktas, E. Botha, S. van Niekerk, M. Venter); Mpumalanga Veterinary Services, Middelburg, South Africa (B. Reininghaus)

Main Article

Figure 3

Phylogram of the RNA-dependent RNA polymerase gene (348-bp fragment) of alphaviruses rooted at the midpoint and created by using maximum-likelihood analysis (67 taxa, generalized time-reversible model with gamma distribution of rates across sites). Black circles indicate wildlife, domestic animals, and birds from South Africa, February 2010–September 2018, and open circles indicate previously reported virus-positive horses (11). Numbers on branches are bootstrap support values. Values are shown

Figure 3. Phylogram of the RNA-dependent RNA polymerase gene (348-bp fragment) of alphaviruses rooted at the midpoint and created by using maximum-likelihood analysis (67 taxa, generalized time-reversible model with gamma distribution of rates across sites). Black circles indicate wildlife, domestic animals, and birds from South Africa, February 2010–September 2018, and open circles indicate previously reported virus-positive horses (11). Numbers on branches are bootstrap support values. Values are shown if they are >60. Sample identification and GenBank Accession numbers: MVA51/10, MK114099; ZRU139/18, MK114091; ZRU140/18, MK114087; ZRU158/14, MK114089; ZRU160/18, MK114092, ZRU203/18_Lung, MK114094; ZRU203/18_Spleen, MK114093; ZRU204/18, MK114095; ZRU209/15, MK114096; ZRU211/15, MK114097; ZRU214/18, MK114098; ZRU54/13, MK114090; ZRU93/15, MK114088. Reference strain, name, accession number, and origin are as described by Forrester et al. (6). Scale bar indicates nucleotide substitutions per site. EEEV, Eastern equine encephalitis virus; MIDV, Middelburg virus; SFV, Semliki Forest virus; SPDV, salmon pancreas disease virus; WEEV, Western equine encephalitis virus.

Main Article

References
  1. Aguilar  PV, Estrada-Franco  JG, Navarro-Lopez  R, Ferro  C, Haddow  AD, Weaver  SC. Endemic Venezuelan equine encephalitis in the Americas: hidden under the dengue umbrella. Future Virol. 2011;6:72140. DOIPubMedGoogle Scholar
  2. Lambert  AJ, Martin  DA, Lanciotti  RS. Detection of North American eastern and western equine encephalitis viruses by nucleic acid amplification assays. J Clin Microbiol. 2003;41:37985. DOIPubMedGoogle Scholar
  3. Zacks  MA, Paessler  S. Encephalitic alphaviruses. Vet Microbiol. 2010;140:2816. DOIPubMedGoogle Scholar
  4. Powers  AM, Brault  AC, Tesh  RB, Weaver  SC. Re-emergence of Chikungunya and O’nyong-nyong viruses: evidence for distinct geographical lineages and distant evolutionary relationships. J Gen Virol. 2000;81:4719. DOIPubMedGoogle Scholar
  5. Wahid  B, Ali  A, Rafique  S, Idrees  M. Global expansion of chikungunya virus: mapping the 64-year history. Int J Infect Dis. 2017;58:6976. DOIPubMedGoogle Scholar
  6. Forrester  NL, Palacios  G, Tesh  RB, Savji  N, Guzman  H, Sherman  M, et al. Genome-scale phylogeny of the alphavirus genus suggests a marine origin. J Virol. 2012;86:272938. DOIPubMedGoogle Scholar
  7. Laine  M, Luukkainen  R, Toivanen  A. Sindbis viruses and other alphaviruses as cause of human arthritic disease. J Intern Med. 2004;256:45771. DOIPubMedGoogle Scholar
  8. McIntosh  B, Jupp  P, Dos Santos  I, Meenehan  G. Epidemics of West Nile and Sindbis viruses in South Africa and Culex (Culex) univittatus. S Afr J Sci. 1976;72:295300.
  9. Lwande  OW, Obanda  V, Bucht  G, Mosomtai  G, Otieno  V, Ahlm  C, et al. Global emergence of Alphaviruses that cause arthritis in humans. Infect Ecol Epidemiol. 2015;5:29853. DOIPubMedGoogle Scholar
  10. Burt  FJ, Goedhals  D, Mathengtheng  L. Arboviruses in southern Africa: are we missing something? Future Virol. 2014;9:9931008. DOIGoogle Scholar
  11. van Niekerk  S, Human  S, Williams  J, van Wilpe  E, Pretorius  M, Swanepoel  R, et al. Sindbis and Middelburg old world alphaviruses associated with neurologic disease in horses, South Africa. Emerg Infect Dis. 2015;21:22259. DOIPubMedGoogle Scholar
  12. Kokernot  RH, Smithburn  KC, Weinbren  MP. Neutralizing antibodies to arthropod-borne viruses in human beings and animals in the Union of South Africa. J Immunol. 1956;77:31323.PubMedGoogle Scholar
  13. Kokernot  RH, De Meillon  B, Paterson  HE, Heymann  CS, Smithburn  KC. Middelburg virus; a hitherto unknown agent isolated from Aedes mosquitoes during an epizootic in sheep in the eastern Cape Province. S Afr J Med Sci. 1957;22:14553.PubMedGoogle Scholar
  14. Attoui  H, Sailleau  C, Mohd Jaafar  F, Belhouchet  M, Biagini  P, Cantaloube  JF, et al. Complete nucleotide sequence of Middelburg virus, isolated from the spleen of a horse with severe clinical disease in Zimbabwe. J Gen Virol. 2007;88:307888. DOIPubMedGoogle Scholar
  15. Smithburn  KC, Kokernot  RH, Heymann  CS, Weinbren  MP, Zentkowsky  D. Neutralizing antibodies for certain viruses in the sera of human beings residing in Northern Natal. S Afr Med J. 1959;33:55561.PubMedGoogle Scholar
  16. Kokernot  RH, Smithburn  KC, Kluge  E. Neutralizing antibodies against arthropod-borne viruses in the sera of domestic quadrupeds ranging in Tongland, Union of South Africa. Ann Trop Med Parasitol. 1961;55:7385. DOIPubMedGoogle Scholar
  17. Hubálek  Z, Rudolf  I, Nowotny  N. Arboviruses pathogenic for domestic and wild animals. Adv Virus Res. 2014;89:20175. DOIPubMedGoogle Scholar
  18. Bancroft  JD, Gamble  M, editors. 2002. Theory and practice of histological techniques. Edinburgh: Churchill Livingstone; 2002.
  19. Zaayman  D, Human  S, Venter  M. A highly sensitive method for the detection and genotyping of West Nile virus by real-time PCR. J Virol Methods. 2009;157:15560. DOIPubMedGoogle Scholar
  20. van Niekerk  M, Freeman  M, Paweska  JT, Howell  PG, Guthrie  AJ, Potgieter  AC, et al. Variation in the NS3 gene and protein in South African isolates of bluetongue and equine encephalosis viruses. J Gen Virol. 2003;84:58190. DOIPubMedGoogle Scholar
  21. Van Eeden  C, Zaayman  D, Venter  M. A sensitive nested real-time RT-PCR for the detection of Shuni virus. J Virol Methods. 2014;195:1005. DOIPubMedGoogle Scholar
  22. Stamatakis  A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30:13123. DOIPubMedGoogle Scholar
  23. Forrester  NL, Palacios  G, Tesh  RB, Savji  N, Guzman  H, Sherman  M, et al. Genome-scale phylogeny of the alphavirus genus suggests a marine origin. J Virol. 2012;86:272938. DOIPubMedGoogle Scholar
  24. Powers  AM, Brault  AC, Shirako  Y, Strauss  EG, Kang  W, Strauss  JH, et al. Evolutionary relationships and systematics of the alphaviruses. J Virol. 2001;75:1011831. DOIPubMedGoogle Scholar
  25. Weaver  SC, Kang  W, Shirako  Y, Rumenapf  T, Strauss  EG, Strauss  JH. Recombinational history and molecular evolution of western equine encephalomyelitis complex alphaviruses. J Virol. 1997;71:61323. DOIPubMedGoogle Scholar
  26. McIntosh  B. The epidemiology of arthropod-borne viruses in southern Africa. Pretoria (South Africa): University of Pretoria; 1980.
  27. Adams  AP, Aronson  JF, Tardif  SD, Patterson  JL, Brasky  KM, Geiger  R, et al. Common marmosets (Callithrix jacchus) as a nonhuman primate model to assess the virulence of eastern equine encephalitis virus strains. J Virol. 2008;82:903542. DOIPubMedGoogle Scholar
  28. de Novaes Oliveira  R, Iamamoto  K, Silva  ML, Achkar  SM, Castilho  JG, Ono  ED, et al. Eastern equine encephalitis cases among horses in Brazil between 2005 and 2009. Arch Virol. 2014;159:261520. DOIPubMedGoogle Scholar
  29. Bengis  RG, Leighton  FA, Fischer  JR, Artois  M, Mörner  T, Tate  CM. The role of wildlife in emerging and re-emerging zoonoses. Rev Sci Tech. 2004;23:497511.PubMedGoogle Scholar
  30. Lederberg  J, Shope  RE, Oaks  SC Jr. Emerging infections: microbial threats to health in the United States. Washington: National Academies Press; 1992.
  31. Morse  SS. Factors and determinants of disease emergence. Rev Sci Tech. 2004;23:44351. DOIPubMedGoogle Scholar

Main Article

Page created: May 18, 2020
Page updated: May 18, 2020
Page reviewed: May 18, 2020
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.
file_external