Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 26, Number 8—August 2020
Research

CrAssphage as a Novel Tool to Detect Human Fecal Contamination on Environmental Surfaces and Hands

Geun Woo ParkComments to Author , Terry Fei Fan Ng, Amy L. Freeland, Vincent C. Marconi, Julie A. Boom, Mary A. Staat, Anna Maria Montmayeur, Hannah Browne, Jothikumar Narayanan, Daniel C. Payne, Cristina V. Cardemil, Aimee Treffiletti, and Jan Vinjé
Author affiliations: Centers for Disease Control and Prevention, Atlanta, Georgia, USA (G.W. Park, T.F.F. Ng, A.L. Freeland, J. Narayanan, D.C. Payne, C.V. Cardemil, A. Treffiletti, J. Vinjé); Atlanta Veteran Administration Medical Center, Atlanta (V.C. Marconi); Emory University School of Medicine, Atlanta (V.C. Marconi); Texas Children’s Hospital, Houston, Texas, USA (J.A. Boom); Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA (M.A. Staat); Cherokee Nation Assurance, Arlington, Virginia, USA (A.M. Montmayeur); Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee, USA (H. Browne)

Main Article

Table 1

Oligonucleotide primers and probe used for detection and typing of crAssphage

Primer or probe DNA sequence Position* Description
CrAssPol_F†
5′-CGG CGG GTT AAT CAA AAT AGA A-3′
8907–8928 (flanking pol)
Forward primer conventional PCR
CrAssPol_R†
5′-GCG GAG AAC CCC ATT TAT TAA TAA G-3′
11334–11310 (flanking pol)
Reverse primer conventional PCR
TN201
5′-ATG TWG GTA RAC AAT TTC ATG TAG AAG-3′
10919–10945 (within pol)
Forward primer 
real-time PCR
TN203
5′-TCA TCA AGA CTA TTA ATA ACD GTN ACA ACA-3′
11111–11082 (within pol)
Reverse primer real-time PCR and typing PCR
TN202
FAM-5-ACC AGC MGC CAT TCT ACT ACG AGH AC-3-BHQ1
11079–11054 (within pol)
Probe real-time PCR
JP1crasF 5′-TAA AAC TAC WAT TTA TAG AGT TAA TAA AGA TGC STT TAG T-3′ 10023–10062 (within pol) Forward primer typing

*The sequence position was determined against a crAssphage sequence from GenBank (accession no. NC_024711).
†Liang et al. (30).

Main Article

References
  1. Bányai  K, Estes  MK, Martella  V, Parashar  UD. Viral gastroenteritis. Lancet. 2018;392:17586. DOIPubMedGoogle Scholar
  2. Harwood  VJ, Staley  C, Badgley  BD, Borges  K, Korajkic  A. Microbial source tracking markers for detection of fecal contamination in environmental waters: relationships between pathogens and human health outcomes. FEMS Microbiol Rev. 2014;38:140. DOIPubMedGoogle Scholar
  3. Julian  TR, MacDonald  LH, Guo  Y, Marks  SJ, Kosek  M, Yori  PP, et al. Fecal indicator bacteria contamination of fomites and household demand for surface disinfection products: a case study from Peru. Am J Trop Med Hyg. 2013;89:86972. DOIPubMedGoogle Scholar
  4. Mattioli  MC, Davis  J, Mrisho  M, Boehm  AB. Quantification of human norovirus GII on hands of mothers with children under the age of five years in Bagamoyo, Tanzania. Am J Trop Med Hyg. 2015;93:47884. DOIPubMedGoogle Scholar
  5. Fiksdal  L, Maki  JS, LaCroix  SJ, Staley  JT. Survival and detection of Bacteroides spp., prospective indicator bacteria. Appl Environ Microbiol. 1985;49:14850. DOIPubMedGoogle Scholar
  6. Sinton  LW, Finlay  RK, Hannah  DJ. Distinguishing human from animal faecal contamination in water: a review. N Z J Mar Freshw Res. 1998;32:32348. DOIGoogle Scholar
  7. Haramoto  E, Kitajima  M, Hata  A, Torrey  JR, Masago  Y, Sano  D, et al. A review on recent progress in the detection methods and prevalence of human enteric viruses in water. Water Res. 2018;135:16886. DOIPubMedGoogle Scholar
  8. Malla  B, Ghaju Shrestha  R, Tandukar  S, Sherchand  JB, Haramoto  E. Performance evaluation of human-specific viral markers and application of pepper mild mottle virus and CrAssphage to environmental water samples as fecal pollution markers in the Kathmandu Valley, Nepal. Food Environ Virol. 2019;11:27487. DOIPubMedGoogle Scholar
  9. De Giglio  O, Caggiano  G, Bagordo  F, Barbuti  G, Brigida  S, Lugoli  F, et al. Enteric viruses and fecal bacteria indicators to assess groundwater quality and suitability for irrigation. Int J Environ Res Public Health. 2017;14:558. DOIPubMedGoogle Scholar
  10. Jiang  SC. Human adenoviruses in water: occurrence and health implications: a critical review. Environ Sci Technol. 2006;40:713240. DOIPubMedGoogle Scholar
  11. Rachmadi  AT, Torrey  JR, Kitajima  M. Human polyomavirus: Advantages and limitations as a human-specific viral marker in aquatic environments. Water Res. 2016;105:45669. DOIPubMedGoogle Scholar
  12. Leone  CM, Dharmasena  M, Tang  C, DiCAPRIO  E, Ma  Y, Araud  E, et al. Prevalence of human noroviruses in commercial food establishment bathrooms. J Food Prot. 2018;81:71928. DOIPubMedGoogle Scholar
  13. Kitajima  M, Haramoto  E, Phanuwan  C, Katayama  H. Prevalence and genetic diversity of Aichi viruses in wastewater and river water in Japan. Appl Environ Microbiol. 2011;77:21847. DOIPubMedGoogle Scholar
  14. Ganime  AC, Leite  JP, Figueiredo  CE, Carvalho-Costa  FA, Melgaço  FG, Malta  FC, et al. Dissemination of human adenoviruses and rotavirus species A on fomites of hospital pediatric units. Am J Infect Control. 2016;44:14113. DOIPubMedGoogle Scholar
  15. Ganime  AC, Carvalho-Costa  FA, Santos  M, Costa Filho  R, Leite  JP, Miagostovich  MP. Viability of human adenovirus from hospital fomites. J Med Virol. 2014;86:20659. DOIPubMedGoogle Scholar
  16. Oristo  S, Rönnqvist  M, Aho  M, Sovijärvi  A, Hannila-Handelberg  T, Hörman  A, et al. Contamination by norovirus and adenovirus on environmental surfaces and in hands of conscripts in two Finnish garrisons. Food Environ Virol. 2017;9:6271. DOIPubMedGoogle Scholar
  17. Maunula  L, Kaupke  A, Vasickova  P, Söderberg  K, Kozyra  I, Lazic  S, et al. Tracing enteric viruses in the European berry fruit supply chain. Int J Food Microbiol. 2013;167:17785. DOIPubMedGoogle Scholar
  18. Dutilh  BE, Cassman  N, McNair  K, Sanchez  SE, Silva  GG, Boling  L, et al. A highly abundant bacteriophage discovered in the unknown sequences of human faecal metagenomes. Nat Commun. 2014;5:4498. DOIPubMedGoogle Scholar
  19. Guerin  E, Shkoporov  A, Stockdale  SR, Clooney  AG, Ryan  FJ, Sutton  TDS, et al. Biology and taxonomy of crAss-like bacteriophages, the most abundant virus in the human gut. Cell Host Microbe. 2018;24:653664.e6. DOIPubMedGoogle Scholar
  20. Shkoporov  AN, Khokhlova  EV, Fitzgerald  CB, Stockdale  SR, Draper  LA, Ross  RP, et al. ΦCrAss001 represents the most abundant bacteriophage family in the human gut and infects Bacteroides intestinalis. Nat Commun. 2018;9:4781. DOIPubMedGoogle Scholar
  21. Stachler  E, Kelty  C, Sivaganesan  M, Li  X, Bibby  K, Shanks  OC. Quantitative CrAssphage PCR assays for human fecal pollution measurement. Environ Sci Technol. 2017;51:914654. DOIPubMedGoogle Scholar
  22. Stachler  E, Akyon  B, de Carvalho  NA, Ference  C, Bibby  K. Correlation of crAssphage qPCR markers with culturable and molecular indicators of human fecal pollution in an impacted urban watershed. Environ Sci Technol. 2018;52:750512. DOIPubMedGoogle Scholar
  23. García-Aljaro  C, Ballesté  E, Muniesa  M, Jofre  J. Determination of crAssphage in water samples and applicability for tracking human faecal pollution. Microb Biotechnol. 2017;10:177580. DOIPubMedGoogle Scholar
  24. Ahmed  W, Payyappat  S, Cassidy  M, Besley  C, Power  K. Novel crAssphage marker genes ascertain sewage pollution in a recreational lake receiving urban stormwater runoff. Water Res. 2018;145:76978. DOIPubMedGoogle Scholar
  25. Ahmed  W, Lobos  A, Senkbeil  J, Peraud  J, Gallard  J, Harwood  VJ. Evaluation of the novel crAssphage marker for sewage pollution tracking in storm drain outfalls in Tampa, Florida. Water Res. 2018;131:14250. DOIPubMedGoogle Scholar
  26. Park  GW, Williamson  KJ, DeBess  E, Cieslak  PR, Gregoricus  N, De Nardo  E, et al. High hand contamination rates during norovirus outbreaks in long-term care facilities. Infect Control Hosp Epidemiol. 2018;39:21921. DOIPubMedGoogle Scholar
  27. Cardemil  CV, Kambhampati  A, Grytdal  S, Rodriguez-Barradas  MC, Vargas  B, Beenhouwer  DO, et al. Incidence of norovirus and rotavirus from multisite active surveillance in Veteran’s Affairs hospitals, December 2016–February 2018: results from the SUPERNOVA network. Open Forum Infect Dis. 2018;5(Suppl 1):S49. DOIGoogle Scholar
  28. Payne  DC, Staat  MA, Edwards  KM, Szilagyi  PG, Gentsch  JR, Stockman  LJ, et al. Active, population-based surveillance for severe rotavirus gastroenteritis in children in the United States. Pediatrics. 2008;122:123543. DOIPubMedGoogle Scholar
  29. Park  GW, Chhabra  P, Vinjé  J. Swab sampling method for the detection of human norovirus on surfaces. J Vis Exp. 2017;•••:120. DOIPubMedGoogle Scholar
  30. Liang  Y, Jin  X, Huang  Y, Chen  S. Development and application of a real-time polymerase chain reaction assay for detection of a novel gut bacteriophage (crAssphage). J Med Virol. 2018;90:4648. DOIPubMedGoogle Scholar
  31. Montmayeur  AM, Ng  TF, Schmidt  A, Zhao  K, Magaña  L, Iber  J, et al. High-throughput next-generation sequencing of polioviruses. J Clin Microbiol. 2017;55:60615. DOIPubMedGoogle Scholar
  32. Edgar  RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32:17927. DOIPubMedGoogle Scholar
  33. Guindon  S, Dufayard  JF, Lefort  V, Anisimova  M, Hordijk  W, Gascuel  O. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol. 2010;59:30721. DOIPubMedGoogle Scholar
  34. Lefort  V, Longueville  JE, Gascuel  O. SMS: Smart Model Selection in PhyML. Mol Biol Evol. 2017;34:24224. DOIPubMedGoogle Scholar
  35. Muhire  BM, Varsani  A, Martin  DP. SDT: a virus classification tool based on pairwise sequence alignment and identity calculation. PLoS One. 2014;9:e108277. DOIPubMedGoogle Scholar
  36. Trevethan  R. Sensitivity, specificity, and predictive values: foundations, pliabilities, and piftalls in research and practice. Front Public Health. 2017;5:17. DOIGoogle Scholar
  37. Wittkowski  KM, Song  T. Nonparametric methods for molecular biology. Methods Mol Biol. 2010;620:10553. DOIPubMedGoogle Scholar
  38. Edwards  RA, Vega  AA, Norman  HM, Ohaeri  M, Levi  K, Dinsdale  EA, et al. Global phylogeography and ancient evolution of the widespread human gut virus crAssphage. Nat Microbiol. 2019;4:172736. DOIPubMedGoogle Scholar
  39. Cinek  O, Mazankova  K, Kramna  L, Odeh  R, Alassaf  A, Ibekwe  MU, et al. Quantitative CrAssphage real-time PCR assay derived from data of multiple geographically distant populations. J Med Virol. 2018;90:76771. DOIPubMedGoogle Scholar
  40. Kirby  AE, Streby  A, Moe  CL. Vomiting as a symptom and transmission risk in norovirus illness: evidence from human challenge studies. PLoS One. 2016;11:e0143759. DOIPubMedGoogle Scholar
  41. Verani  M, Bigazzi  R, Carducci  A. Viral contamination of aerosol and surfaces through toilet use in health care and other settings. Am J Infect Control. 2014;42:75862. DOIPubMedGoogle Scholar
  42. Barker  J, Jones  MV. The potential spread of infection caused by aerosol contamination of surfaces after flushing a domestic toilet. J Appl Microbiol. 2005;99:33947. DOIPubMedGoogle Scholar
  43. Liang  YY, Zhang  W, Tong  YG, Chen  SP. crAssphage is not associated with diarrhoea and has high genetic diversity. Epidemiol Infect. 2016;144:354953. DOIPubMedGoogle Scholar

Main Article

Page created: May 07, 2020
Page updated: July 17, 2020
Page reviewed: July 17, 2020
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.
file_external