Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 27, Number 2—February 2021
Research

Excess Deaths during Influenza and Coronavirus Disease and Infection-Fatality Rate for Severe Acute Respiratory Syndrome Coronavirus 2, the Netherlands

Liselotte van AstenComments to Author , Carel N. Harmsen, Lenny Stoeldraijer, Don Klinkenberg, Anne C. Teirlinck, Marit M.A. de Lange, Adam Meijer, Jan van de Kassteele, Arianne B. van Gageldonk-Lafeber, Susan van den Hof, and Wim van der Hoek
Author affiliations: National Institute for Public Health and the Environment, Bilthoven, the Netherlands (L. van Asten, D. Klinkenberg, A.C. Teirlinck, M.M.A. de Lange, A. Meijer, J. van de Kassteele, A.B. van Gageldonk-Lafeber, S. van den Hof, W. van der Hoek); Statistics Netherlands, the Hague, the Netherlands (C.N. Harmsen, L. Stoeldraijer)

Main Article

Table 2

Excess deaths during influenza epidemics and the COVID-19 epidemic, the Netherlands*

Season
Influenza strains†
Influenza vaccine match‡
Vaccinated, % of target group§
Epidemic duration, weeks
Excess deaths
No. (range)¶
% Above expected deaths
2010–2011 A(H1N1)pdm09 dominance followed by B Victoria dominance Match 69 7 416 (−722 to 1,555) 2
2011–2012 A(H3N2) dominance Mismatch 66 2 600 (308–892) 11
2012–2013 Mixed A(H1N1)pdm09 and A(H3N2) dominance followed by mixed B Yamagata and Victoria dominance Mismatch 62 18 6,318 (3,790–8,846) 13
2013–2014 Mixed dominance with slightly more A(H3N2) than A(H1N1)pdm09 Mismatch 60 11 −581 (−1,927 to –765) −2.1
2014–2015 A(H3N2) dominance followed by B Yamagata dominance Mismatch 57 21 8,574 (5,831–11,316) 15
2015–2016 A(H1N1)pdm09 dominance followed by B Victoria dominance Match 56 11 3,883 (2,390–5, 375) 13
2016–2017 A(H3N2) Match 54 15 7,527 (5,236–9,817) 18
2017–2018 B Yamagata dominance; at end of season mixed AH3N2 and A(H1N1)pdm09 dominance Mismatch; match# 50 18 9,373 (6,439–12,306) 18
2018–2019 Mixed A(H1N1)pdm09 and AH3N2 dominance Match 51 14 2,858 (499–5,217) 7
2019–2020 Mixed A(H1N1)pdm09 and AH3N2 dominance Match 53 3** 404 (−97 to –905) 4
2019–2020 Mixed Influenza and COVID-19 epidemic (weeks 10 and 11, 2020) Match NA 2 213 (−115 to −541) 4
2019–2020 COVID-19 (selected weeks: 12–19, 2020) NA NA 8†† 9,554 (8,271–10,838) 41
2010–2020 Influenza seasonal average NA NA 12 3,995 10

*COVID-19, coronavirus disease; NA, not applicable; pdm, pandemic.
†COVID-19 or influenza epidemic (influenza strains as reported in the Annual report: surveillance of influenza and other respiratory infections in the Netherlands).
‡Vaccine match with the dominant influenza strain(s).
§Persons >60 years of age or with concurrent conditions and increased risk for influenza complications, % as reported previously (1619).
¶Number of deaths above expected baseline number of deaths (observed minus expected deaths). The range is approximated by the lower limit minus observed and the upper limit minus observed.
#Mismatch: Yamagata was not included in the vaccine; match: for both influenza A H1 and H3 strains.   
**Excluding weeks 10 and 11 in 2020, which were both COVID-19 and influenza epidemic weeks (COVID-19: week 12–19: Thursday March 12–Wednesday May 6). 
††Weeks with high excess deaths in the first wave of the COVID-19 epidemic.

Main Article

References
  1. van Asten  L, de Lange  M, Teirlinck  A, Stoeldraijer  L, Harmsen  C, van der Hoek  W. Mortality surveillance in the Netherlands: severity of winter 2016/2017. Online J Public Health Inform. 2018;10:10. DOIGoogle Scholar
  2. Vestergaard  LS, Nielsen  J, Krause  TG, Espenhain  L, Tersago  K, Bustos Sierra  N, et al. Excess all-cause and influenza-attributable mortality in Europe, December 2016 to February 2017. Euro Surveill. 2017;22:30506. DOIPubMedGoogle Scholar
  3. van Asten  L, van den Wijngaard  C, van Pelt  W, van de Kassteele  J, Meijer  A, van der Hoek  W, et al. Mortality attributable to 9 common infections: significant effect of influenza A, respiratory syncytial virus, influenza B, norovirus, and parainfluenza in elderly persons. J Infect Dis. 2012;206:62839. DOIPubMedGoogle Scholar
  4. Nielsen  J, Mazick  A, Andrews  N, Detsis  M, Fenech  TM, Flores  VM, et al. Pooling European all-cause mortality: methodology and findings for the seasons 2008/2009 to 2010/2011. Epidemiol Infect. 2013;141:19962010. DOIPubMedGoogle Scholar
  5. Leon  DA, Shkolnikov  VM, Smeeth  L, Magnus  P, Pechholdová  M, Jarvis  CI. COVID-19: a need for real-time monitoring of weekly excess deaths. Lancet. 2020;395:e81. DOIPubMedGoogle Scholar
  6. Olson  DR, Huynh  M, Fine  A, Baumgartner  J, Castro  A, Chan  HT, et al.; New York City Department of Health and Mental Hygiene (DOHMH) COVID-19 Response Team. Preliminary estimate of excess mortality during the COVID-19 outbreak—New York City, March 11–May 2, 2020. MMWR Morb Mortal Wkly Rep. 2020;69:6035. DOIPubMedGoogle Scholar
  7. Reukers  DF, Brandsema  L, Dijkstra  PS, Donker  F, van Gageldonk-Lafeber  GA, Hooiveld  AB, et al. Annual report. Surveillance of influenza and other respiratory infections in the Netherlands: winter 2018/2019. RIVM: Bilthoven (the Netherlands); 2019 [cited 2020 Nov 15]. https://www.rivm.nl/bibliotheek/rapporten/2019-0079.pdf
  8. van Asten  LW, Harmsen  C, van Gageldonk  C, van Pelt  R, van Vliet  W, van der Sande  H, et al. M., Syndromic surveillance with death data: is crude mortality data suitable for real time surveillance? Advances in Disease Surveillance. 2007;4:269.
  9. van Asten  L, de Lange  M, Harmsen  C, van den Wijngaard  K, Kretzschmar  M, van der Hoek  W. Mortality monitoring in the Netherlands. Online J Public Health Inform. 2014;•••:6.
  10. Teirlinck  AC, van Asten  L, Brandsema  PS, Dijkstra  F, Donker  GA, Euser  SM, et al. Annual report: surveillance of influenza and other respiratory infections in the Netherlands: winter 2014/2015; 2015. Rijksinstituut voor Volksgezondheid en Milieu (RIVM) [cited 2020 Nov 15]. https://www.rivm.nl/bibliotheek/rapporten/2015-0042.pdf
  11. Donker  G. Nivel primary care registry: sentinels 2018; 2019 [in Dutch] [cited 2020 Nov 16]. https://nivel.nl/en/publicatie/nivel-zorgregistraties-eerste-lijn-peilstations-2018
  12. Vega  T, Lozano  JE, Meerhoff  T, Snacken  R, Mott  J, Ortiz de Lejarazu  R, et al. Influenza surveillance in Europe: establishing epidemic thresholds by the moving epidemic method. Influenza Other Respir Viruses. 2013;7:54658. DOIPubMedGoogle Scholar
  13. Dijkstra  F, van Gageldonk-Lafeber  AB, Brandsema  P, Friesema  IH, Robert-Du Ry van Beest Holle  M, van der Lubben  IM, et al. Year report. Respiratory infections 2007/2008; 2008. RIVM, Bilthoven, the Netherlands [cited 2020 Nov 16]. https://www.rivm.nl/bibliotheek/rapporten/210231003.pdf
  14. Teirlinck  A, van Asten  L, Brandsema  P, Dijkstra  F. Annual report: surveillance of respiratory infections 2013/2014; 2014 [in Dutch] [cited 2020 Nov 16]. https://www.rivm.nl/bibliotheek/rapporten/150002006.pdf
  15. Bulletin of Influenza Surveillance. Number of ILI patients above epidemic threshold, 2020 [in Dutch] [cited 2020 Nov 15]. https://www.nivel.nl/sites/default/files/influenza-nieuwsbrief/NB_2019_2020_no5.pdf
  16. Tacken  M, Mulder  J, Visscher  S, Tiersma  W, Donkers  J, Verheij  R, et al. Monitoring the influenza vaccination coverage 2009; 2010 [in Dutch] [cited 2020 Nov 15]. https://www.nivel.nl/sites/default/files/bestanden/LINH%20griepmonitoring%202009%20rapport.pdf
  17. Heins  MJ, Hooiveld  M, Davids  R, Korevaar  JC. Influenza vaccination coverage in the Dutch National Programme for Influenza Prevention, 2016; 2017 [cited 2020 Nov 16]. https://nivel.nl/sites/default/files/bestanden/Monitor_Vaccinatiegraad_Nationaal_Programma_Grieppreventie_2016.pdf.
  18. Heins  M, Hooiveld  M, Korevaar  J. Vaccine Coverage Dutch National Influenza Prevention Program 2018: brief monitor, 2019 [cited 2020 Nov 15]. https://www.nivel.nl/nl/publicatie/vaccine-coverage-dutch-national-influenza-prevention-program-2018-brief-monitor
  19. Heins  MJ, Hooiveld  M, Davids  R, Korevaar  JC. Vaccine Coverage Dutch National Influenza Prevention Program 2019: brief monitor, 2020 [cited 2020 Nov 15]. https://www.nivel.nl/nl/publicatie/vaccine-coverage-dutch-national-influenza-prevention-program-2019-brief-monitor
  20. Sanquin. Approximately 3% of blood donors have antibodies against SARS-CoV-2, April 16, 2020 [in Dutch] [cited 2020 Nov 15]. https://www.sanquin.nl/over-sanquin/nieuws/2020/04/sanquin-ongeveer-3-van-donors-heeft-corona-antistoffen
  21. RIVM. Preliminary results from the Pienter corona study, 2020 [in Dutch] [cited 2020 Nov 15] https://www.rivm.nl/pienter-corona-studie/voorlopige-resultaten
  22. Sanquin. Approximately 5% of blood donors have antibodies against SARS-CoV-2; June 3, 29020 [in Dutch] [cited 2020 Nov 15]. https://www.sanquin.nl/over-sanquin/persberichten/2020/06/ongeveer-5-procent-van-bloeddonors-heeft-corona-antistoffen
  23. van Dissel  J. COVID 19 presentation for the House of Representatives of the Netherlands, May 20, 2020 [in Dutch]. National Institute for Public Health and the Environment (RIVM) [cited 2020 Nov 15]. https://www.tweedekamer.nl/kamerstukken/detail?id=2020D19084&did=2020D19084
  24. Hsiang  S, Allen  D, Annan-Phan  S, Bell  K, Bolliger  I, Chong  T, et al. The effect of large-scale anti-contagion policies on the COVID-19 pandemic. Nature. 2020;584:2627. DOIPubMedGoogle Scholar
  25. Faust  JS, Del Rio  C. Assessment of deaths from COVID-19 and from seasonal influenza. JAMA Intern Med. 2020;180:10456. DOIPubMedGoogle Scholar
  26. Flaxman  S, Mishra  S, Gandy  A, Unwin  HJT, Mellan  TA, Coupland  H, et al.; Imperial College COVID-19 Response Team. Estimating the effects of non-pharmaceutical interventions on COVID-19 in Europe. Nature. 2020;584:25761. DOIPubMedGoogle Scholar
  27. Thompson  WW, Weintraub  E, Dhankhar  P, Cheng  PY, Brammer  L, Meltzer  MI, et al. Estimates of US influenza-associated deaths made using four different methods. Influenza Other Respir Viruses. 2009;3:3749. DOIPubMedGoogle Scholar
  28. Molbak  K, Espenhain  L, Nielsen  J, Tersago  K, Bossuyt  N, Denissov  G, et al. Excess mortality among the elderly in European countries, December 2014 to February 2015. Euro Surveill. 2015;20:21065. DOIPubMedGoogle Scholar
  29. Nielsen  J, Vestergaard  LS, Richter  L, Schmid  D, Bustos  N, Asikainen  T, et al. European all-cause excess and influenza-attributable mortality in the 2017/18 season: should the burden of influenza B be reconsidered? Clin Microbiol Infect. 2019;25:126676. DOIPubMedGoogle Scholar
  30. Serfling  RE. Methods for current statistical analysis of excess pneumonia-influenza deaths. Public Health Rep. 1963;78:494506. DOIPubMedGoogle Scholar
  31. Baghdadi  Y, Gallay  A, Caserio-Schönemann  C, Fouillet  A. Evaluation of the French reactive mortality surveillance system supporting decision making. Eur J Public Health. 2019;29:6017. DOIPubMedGoogle Scholar
  32. Green  HK, Andrews  N, Fleming  D, Zambon  M, Pebody  R. Mortality attributable to influenza in England and Wales prior to, during and after the 2009 pandemic. PLoS One. 2013;8:e79360. DOIPubMedGoogle Scholar
  33. van Asten  L, Luna Pinzon  A, van de Kassteele  J, Donker  G, de Lange  DW, Dongelmans  DA, et al. The association between influenza infections in primary care and intensive care admissions for severe acute respiratory infection (SARI): A modelling approach. Influenza Other Respir Viruses. 2020;14:57586. DOIPubMedGoogle Scholar
  34. Nivel. Nivel primary care database: weekly numbers [cited 2020 Nov 15]. https://www.nivel/nl/surveillance
  35. Michelozzi  P, de’Donato  F, Scortichini  M, De Sario  M, Noccioli  F, Rossi  P, et al. Mortality impacts of the coronavirus disease (COVID-19) outbreak by sex and age: rapid mortality surveillance system, Italy, 1 February to 18 April 2020. Euro Surveill. 2020;25.
  36. Hanlon  P, Chadwick  F, Shah  A, Wood  R, Minton  J, McCartney  G, et al. COVID-19: exploring the implications of long-term condition type and extent of multimorbidity on years of life lost: a modelling study. Wellcome Open Res. 2020;5:75. DOIGoogle Scholar
  37. Cowling  BJ, Ali  ST, Ng  TWY, Tsang  TK, Li  JCM, Fong  MW, et al. Impact assessment of non-pharmaceutical interventions against coronavirus disease 2019 and influenza in Hong Kong: an observational study. Lancet Public Health. 2020;5:e27988. DOIPubMedGoogle Scholar

Main Article

Page created: November 16, 2020
Page updated: January 23, 2021
Page reviewed: January 23, 2021
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.
file_external