Volume 27, Number 2—February 2021
Research
Spread of Multidrug-Resistant Rhodococcus equi, United States
Table
Antibiotic |
pRErm46 |
pRErm46 ΔC1I-tetRA(33) |
|||
---|---|---|---|---|---|
Phenotype† |
MIC, μg/mL‡ |
Phenotype |
MIC, μg/mL |
||
Tetracycline | Resistant (100)§ | 21.33 (8–48)¶ | Susceptible (100)§ | 1.97 (0.38–3)¶ | |
Doxycycline | Susceptible (100) | 3.35 (0.75–6)** | Susceptible (100) | 1.06 (0.25–3)** |
*Susceptibility data to other relevant antimicrobials are shown in Appendix Table 2). †Determined by disk diffusion technique. Isolate percentage shown in parenthesis. Zone diameter susceptibility breakpoints based on Clinical and Laboratory Standards Institute interpretive criteria for Staphylococcus aureus, routinely used for R. equi susceptibility testing in the absence of specific approved criteria for this species (11,16). ‡Minimal inhibitory concentration determined using Etest strips. Mean value (range in parenthesis). §p<0.001 by χ2 test. ¶p<0.001 by t-test. **p<0.001 by t-test. Presence of TetRA(33) appears to induce a small, statistically significant MIC increase, but MIC remains below the Clinical and Laboratory Standards Institute susceptibility breakpoint for doxycycline (susceptible <4 μg/mL, intermediate 8 μg/mL, resistant >16 μg/mL).
References
- Prescott JF. Rhodococcus equi: an animal and human pathogen. Clin Microbiol Rev. 1991;4:20–34. DOIPubMedGoogle Scholar
- Vázquez-Boland JA, Giguère S, Hapeshi A, MacArthur I, Anastasi E, Valero-Rello A. Rhodococcus equi: the many facets of a pathogenic actinomycete. Vet Microbiol. 2013;167:9–33. DOIPubMedGoogle Scholar
- Yamshchikov AV, Schuetz A, Lyon GM. Rhodococcus equi infection. Lancet Infect Dis. 2010;10:350–9. DOIPubMedGoogle Scholar
- MacArthur I, Anastasi E, Alvarez S, Scortti M, Vázquez-Boland JA. Comparative genomics of Rhodococcus equi virulence plasmids indicates host-driven evolution of the vap pathogenicity island. Genome Biol Evol. 2017;9:1241–7. DOIPubMedGoogle Scholar
- Ocampo-Sosa AA, Lewis DA, Navas J, Quigley F, Callejo R, Scortti M, et al. Molecular epidemiology of Rhodococcus equi based on traA, vapA, and vapB virulence plasmid markers. J Infect Dis. 2007;196:763–9. DOIPubMedGoogle Scholar
- Vázquez-Boland JA, Meijer WG. The pathogenic actinobacterium Rhodococcus equi: what’s in a name? Mol Microbiol. 2019;112:1–15. DOIPubMedGoogle Scholar
- Muscatello G, Leadon DP, Klayt M, Ocampo-Sosa A, Lewis DA, Fogarty U, et al. Rhodococcus equi infection in foals: the science of ‘rattles’. Equine Vet J. 2007;39:470–8. DOIPubMedGoogle Scholar
- Giguère S. Treatment of infections caused by Rhodococcus equi. Vet Clin North Am Equine Pract. 2017;33:67–85. DOIPubMedGoogle Scholar
- Giguère S, Cohen ND, Chaffin MK, Slovis NM, Hondalus MK, Hines SA, et al. Diagnosis, treatment, control, and prevention of infections caused by Rhodococcus equi in foals. J Vet Intern Med. 2011;25:1209–20. DOIPubMedGoogle Scholar
- Burton AJ, Giguère S, Sturgill TL, Berghaus LJ, Slovis NM, Whitman JL, et al. Macrolide- and rifampin-resistant Rhodococcus equi on a horse breeding farm, Kentucky, USA. Emerg Infect Dis. 2013;19:282–5. DOIPubMedGoogle Scholar
- Giguère S, Lee E, Williams E, Cohen ND, Chaffin MK, Halbert N, et al. Determination of the prevalence of antimicrobial resistance to macrolide antimicrobials or rifampin in Rhodococcus equi isolates and treatment outcome in foals infected with antimicrobial-resistant isolates of R equi. J Am Vet Med Assoc. 2010;237:74–81. DOIPubMedGoogle Scholar
- Huber L, Giguère S, Slovis NM, Carter CN, Barr BS, Cohen ND, et al. Emergence of resistance to macrolides and rifampin in clinical isolates of Rhodococcus equi from foals in central Kentucky, 1995 to 2017. Antimicrob Agents Chemother. 2018;63:e01714–8. DOIPubMedGoogle Scholar
- Anastasi E, Giguère S, Berghaus LJ, Hondalus MK, Willingham-Lane JM, MacArthur I, et al. Novel transferable erm(46) determinant responsible for emerging macrolide resistance in Rhodococcus equi. J Antimicrob Chemother. 2015;70:3184–90.PubMedGoogle Scholar
- Erol E, Locke S, Saied A, Cruz Penn MJ, Smith J, Fortner J, et al. Antimicrobial susceptibility patterns of Rhodococcus equi from necropsied foals with rhodococcosis. Vet Microbiol. 2020;242:
108568 . DOIPubMedGoogle Scholar - Álvarez-Narváez S, Giguère S, Anastasi E, Hearn J, Scortti M, Vázquez-Boland JA. Clonal confinement of a highly mobile resistance element driven by combination therapy in Rhodococcus equi. MBio. 2019;10:e02260–19. DOIPubMedGoogle Scholar
- Berghaus LJ, Giguère S, Guldbech K, Warner E, Ugorji U, Berghaus RD. Comparison of Etest, disk diffusion, and broth macrodilution for in vitro susceptibility testing of Rhodococcus equi. J Clin Microbiol. 2015;53:314–8. DOIPubMedGoogle Scholar
- Koren S, Walenz BP, Berlin K, Miller JR, Bergman NH, Phillippy AM. Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res. 2017;27:722–36. DOIPubMedGoogle Scholar
- Treangen TJ, Ondov BD, Koren S, Phillippy AM. The Harvest suite for rapid core-genome alignment and visualization of thousands of intraspecific microbial genomes. Genome Biol. 2014;15:524. DOIPubMedGoogle Scholar
- Price MN, Dehal PS, Arkin AP. FastTree 2—approximately maximum-likelihood trees for large alignments. PLoS One. 2010;5:
e9490 . DOIPubMedGoogle Scholar - Anastasi E, MacArthur I, Scortti M, Alvarez S, Giguère S, Vázquez-Boland JA. Pangenome and phylogenomic analysis of the pathogenic actinobacterium Rhodococcus equi. Genome Biol Evol. 2016;8:3140–8. DOIPubMedGoogle Scholar
- Cohen ND, Smith KE, Ficht TA, Takai S, Libal MC, West BR, et al. Epidemiologic study of results of pulsed-field gel electrophoresis of isolates of Rhodococcus equi obtained from horses and horse farms. Am J Vet Res. 2003;64:153–61. DOIPubMedGoogle Scholar
- Morton AC, Begg AP, Anderson GA, Takai S, Lämmler C, Browning GF. Epidemiology of Rhodococcus equi strains on Thoroughbred horse farms. Appl Environ Microbiol. 2001;67:2167–75. DOIPubMedGoogle Scholar
- Tauch A, Götker S, Pühler A, Kalinowski J, Thierbach G. The 27.8-kb R-plasmid pTET3 from Corynebacterium glutamicum encodes the aminoglycoside adenyltransferase gene cassette aadA9 and the regulated tetracycline efflux system Tet 33 flanked by active copies of the widespread insertion sequence IS6100. Plasmid. 2002;48:117–29. DOIPubMedGoogle Scholar
- Chopra I, Roberts M. Tetracycline antibiotics: mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbiol Mol Biol Rev. 2001;65:232–60. DOIPubMedGoogle Scholar
- Targant H, Doublet B, Aarestrup FM, Cloeckaert A, Madec JY. IS6100-mediated genetic rearrangement within the complex class 1 integron In104 of the Salmonella genomic island 1. J Antimicrob Chemother. 2010;65:1543–5. DOIPubMedGoogle Scholar
- Partridge SR, Recchia GD, Stokes HW, Hall RM. Family of class 1 integrons related to In4 from Tn1696. Antimicrob Agents Chemother. 2001;45:3014–20. DOIPubMedGoogle Scholar
- Huber L, Giguère S, Cohen ND, Slovis NM, Hanafi A, Schuckert A, et al. Prevalence and risk factors associated with emergence of Rhodococcus equi resistance to macrolides and rifampicin in horse-breeding farms in Kentucky, USA. Vet Microbiol. 2019;235:243–7. DOIPubMedGoogle Scholar
- Álvarez-Narváez S, Berghaus LJ, Morris ERA, Willingham-Lane JM, Slovis NM, Giguere S, et al. A common practice of widespread antimicrobial use in horse production promotes multi-drug resistance. Sci Rep. 2020;10:911. DOIPubMedGoogle Scholar
- Kilby ER. The demographics of the US equine population. In: Salem DJ, Rowan AN, editors. The state of the animals. Washington (DC): Human Society Press; 2007. p. 175–205.
- Womble A, Giguère S, Lee EA. Pharmacokinetics of oral doxycycline and concentrations in body fluids and bronchoalveolar cells of foals. J Vet Pharmacol Ther. 2007;30:187–93. DOIPubMedGoogle Scholar
- Collignon PJ, Conly JM, Andremont A, McEwen SA, Aidara-Kane A, Agerso Y, et al.; World Health Organization Advisory Group, Bogotá Meeting on Integrated Surveillance of Antimicrobial Resistance (WHO-AGISAR). World Health Organization ranking of antimicrobials according to their importance in human medicine: a critical step for developing risk management strategies to control antimicrobial resistance from food animal production. Clin Infect Dis. 2016;63:1087–93. DOIPubMedGoogle Scholar
- Álvarez-Narváez S, Giguère S, Berghaus LJ, Dailey C, Vázquez-Boland JA. Horizontal spread of Rhodococcus equi macrolide resistance plasmid pRErm46 across environmental Actinobacteria. Appl Environ Microbiol. 2020;86:e00108–20. DOIPubMedGoogle Scholar
- Letek M, González P, Macarthur I, Rodríguez H, Freeman TC, Valero-Rello A, et al. The genome of a pathogenic rhodococcus: cooptive virulence underpinned by key gene acquisitions. PLoS Genet. 2010;6:
e1001145 . DOIPubMedGoogle Scholar
1Deceased.