Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 27, Number 3—March 2021
Dispatch

Bedaquiline as Treatment for Disseminated Nontuberculous Mycobacteria Infection in 2 Patients Co-Infected with HIV

Eliza GilComments to Author , Nicola Sweeney, Veronica Barrett, Stephen Morris-Jones, Robert F. Miller, Victoria J. Johnston, and Michael Brown
Author affiliations: University College London Hospitals, National Health Service Foundation Trust, London, UK (E. Gil, N. Sweeney, V. Barrett, S. Morris-Jones, V.J. Johnston, M. Brown); Central and North West London National Health Service Foundation Trust, London (R.F. Miller); University College London, London (R.F. Miller); London School of Hygiene and Tropical Medicine, London (R.F. Miller, V.J. Johnston, M. Brown)

Main Article

Table 1

MICs and CLSI interpretation as reported by Public Health England reference laboratory for all drugs tested against Mycobacterium abscessus isolate from case-patient 1 (5)*

Drug MIC, mg/L CLSI interpretation
Amikacin
Month 0: 16 Sensitive
Month 3: 32
Intermediate
Cefoxitin 128 Resistant
Ciprofloxacin >4 Resistant
Clarithromycin >16 Resistant (phenotype suggestive of inducible resistance)
Cotrimoxazole >8/152 Resistant
Doxycycline >16 Resistant
Imipenem
16
Intermediate
Linezolid
Month 0: 32 Resistant
Month 3: 16
Intermediate
Moxifloxacin >8 Resistant
Tigecycline 2 No defined breakpoints
Tobramycin 8 Resistant

*MICs were obtained for the initial isolate of the patient at month 0, and again at month 3. Where duplicated, values were consistent, except for amikacin and linezolid, where both MICs are included. CLSI, Clinical and Laboratory Standards Institute.

Main Article

References
  1. Holland  SM. Nontuberculous mycobacteria. Am J Med Sci. 2001;321:4955. DOIPubMed
  2. Brown-Elliott  BA, Nash  KA, Wallace  RJ Jr. Antimicrobial susceptibility testing, drug resistance mechanisms, and therapy of infections with nontuberculous mycobacteria. Clin Microbiol Rev. 2012;25:54582. DOIPubMed
  3. Millar  BC, Moore  JE. Antimycobacterial strategies to evade antimicrobial resistance in the nontuberculous mycobacteria. Int J Mycobacteriol. 2019;8:721. DOIPubMed
  4. Pym  AS, Diacon  AH, Tang  S-J, Conradie  F, Danilovits  M, Chuchottaworn  C, et al.; TMC207-C209 Study Group. Bedaquiline in the treatment of multidrug- and extensively drug-resistant tuberculosis. Eur Respir J. 2016;47:56474. DOIPubMed
  5. M24Ed3 susceptibility testing of mycobacteria, Nocardia spp., and other aerobic Actinomycetes, 3rd ed. Wayne (PA): Clinical and Laboratory Standards Institute [cited 2020 Nov 6]. https://clsi.org/standards/products/microbiology/documents/m24
  6. Schön  T, Chryssanthou  E. Minimum inhibitory concentration distributions for Mycobacterium avium complex-towards evidence-based susceptibility breakpoints. Int J Infect Dis. 2017;55:1224. DOIPubMed
  7. Benson  CA, Williams  PL, Currier  JS, Holland  F, Mahon  LF, MacGregor  RR, et al.; AIDS Clinical Trials Group 223 Protocol Team. A prospective, randomized trial examining the efficacy and safety of clarithromycin in combination with ethambutol, rifabutin, or both for the treatment of disseminated Mycobacterium avium complex disease in persons with acquired immunodeficiency syndrome. Clin Infect Dis. 2003;37:123443. DOIPubMed
  8. Bax  HI, Bakker-Woudenberg  IA, Ten Kate  MT, Verbon  A, de Steenwinkel  JE. Tigecycline potentiates clarithromycin activity against Mycobacterium avium in vitro. Antimicrob Agents Chemother. 2016;60:25779. DOIPubMed
  9. Diacon  AH, Pym  A, Grobusch  MP, de los Rios  JM, Gotuzzo  E, Vasilyeva  I, et al.; TMC207-C208 Study Group. Multidrug-resistant tuberculosis and culture conversion with bedaquiline. N Engl J Med. 2014;371:72332. DOIPubMed
  10. Aguilar-Ayala  DA, Cnockaert  M, André  E, Andries  K, Gonzalez-Y-Merchand  JA, Vandamme  P, et al. In vitro activity of bedaquiline against rapidly growing nontuberculous mycobacteria. J Med Microbiol. 2017;66:11403. DOIPubMed
  11. Martin  A, Godino  IT, Aguilar-Ayala  DA, Mathys  V, Lounis  N, Villalobos  HR. In vitro activity of bedaquiline against slow-growing nontuberculous mycobacteria. J Med Microbiol. 2019;68:11379. DOIPubMed
  12. Cholo  MC, Mothiba  MT, Fourie  B, Anderson  R. Mechanisms of action and therapeutic efficacies of the lipophilic antimycobacterial agents clofazimine and bedaquiline. J Antimicrob Chemother. 2017;72:33853. DOIPubMed
  13. Lounis  N, Gevers  T, Van den Berg  J, Vranckx  L, Andries  K. ATP synthase inhibition of Mycobacterium avium is not bactericidal. Antimicrob Agents Chemother. 2009;53:49279. DOIPubMed
  14. Alexander  DC, Vasireddy  R, Vasireddy  S, Philley  JV, Brown-Elliott  BA, Perry  BJ, et al. Emergence of mmpT5 variants during bedaquiline treatment of Mycobacterium intracellulare lung disease. J Clin Microbiol. 2017;55:57484. DOIPubMed
  15. Ruth  MM, Sangen  JJN, Remmers  K, Pennings  LJ, Svensson  E, Aarnoutse  RE, et al. A bedaquiline/clofazimine combination regimen might add activity to the treatment of clinically relevant non-tuberculous mycobacteria. J Antimicrob Chemother. 2019;74:93543. DOIPubMed

Main Article

Page created: November 11, 2020
Page updated: February 21, 2021
Page reviewed: February 21, 2021
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.
file_external