Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 27, Number 8—August 2021
Research

Spatial, Ecologic, and Clinical Epidemiology of Community-Onset, Ceftriaxone-Resistant Enterobacteriaceae, Cook County, Illinois, USA

Vanessa SardáComments to Author , William E. Trick, Huiyuan Zhang, and David N. Schwartz
Author affiliations: Cook County Health, Chicago, IL, USA (V. Sardá, W.E. Trick, H. Zhang, D.N. Schwartz); Rush Medical College, Chicago (V. Sardá, W.E. Trick, D.N. Schwartz)

Main Article

Table 4

Individual and population-level risk factors for ceftriaxone-resistant Enterobacteriaceae in patients, Cook County Health healthcare system, Illinois, USA, 2016–2018*

Characteristic
No. (%) isolates

Bivariate analysis
All
Ceftriaxone-susceptible
Ceftriaxone-resistant
OR (95% CI)
p value
Total no. isolates
10,891 (100)
9,856 (90.5)
1,035 (9.5)



Sex
F 7,853 (72.1) 7,215 (66.2) 638 (5.9) Referent
M
3,038 (27.9)
2,641 (24.2)
397 (3.7)

1.7 (1.5–1.9)
<0.01
Age group, y
18–34 2,011 (18.6) 1,895 (17.4) 116 (1.2) Referent
35–51 3,109 (28.5) 2,846 (26.1) 263 (2.4) 1.5 (1.2–1.9) <0.01
52–68 4,092 (37.5) 3,667 (33.7) 425 (3.8) 1.9 (1.5–2.3) <0.01
69–85 1,471 (13.5) 1,259 (11.6) 212 (1.9) 2.8 (2.2–3.5) <0.01
>85
208 (1.9)
189 (90.9)
19 (9.1)

1.6 (0.9–2.7)
0.05
Race and ethnicity
Non-Hispanic White 997 (9.2) 902 (8.3) 95 (0.9) 1.6 (1.2–2.0) <0.01
Non-Hispanic Black 4,394 (40.4) 4,120 (37.8) 274 (2.6) Referent
Hispanic 4,898 (44.9) 4,324 (39.7) 574 (5.2) 1.9 (1.7–2.3) <0.01
Other†
602 (5.5)
510 (4.7)
92 (0.8)

2.7 (2.1–3.5
<0.01
Encounter type
Outpatient 5,889 (54.1) 5,419 (49.8) 470 (4.3) Referent
Emergency department 2,890 (26.5) 2,655 (24.4) 235 (2.1) 1.0 (0.9–1.2) 0.80
Inpatient
2,112 (19.4)
1,782 (16.4)
330 (3.0)

2.1 (1.8–2.5)
<0.01
Mean % foreign-born population (SD)‡ 21.5 (17.0) 21.04 (17.0) 25.8 (16.2) 1.0 (1.0–1.1) <0.01

*Values are no. (%) except as indicated. OR, odds ratio. †Other refers to isolates from participants who identified as non-Hispanic and reported race as Asian (3% of all isolates), American Indian/Alaska Native (0.4%), multiple races (0.1%), or unknown race (0.8%). ‡Based on data from 2017 American Community Survey 5-year estimates (19).

Main Article

References
  1. CDC. Antibiotic resistance threats in the United States, 2019 [cited 2020 Oct 1]. https://www.cdc.gov/drugresistance/pdf/threats-report/2019-ar-threats-report-508.pdf
  2. Jernigan  JA, Hatfield  KM, Wolford  H, Nelson  RE, Olubajo  B, Reddy  SC, et al. Multidrug-resistant bacterial infections in U.S. hospitalized patients, 2012–2017. N Engl J Med. 2020;382:130919. DOIPubMedGoogle Scholar
  3. Flokas  ME, Karanika  S, Alevizakos  M, Mylonakis  E. Prevalence of ESBL-producing Enterobacteriaceae in pediatric bloodstream infections: a systematic review and meta-analysis. PLoS One. 2017;12:e0171216. DOIPubMedGoogle Scholar
  4. Toy  T, Pak  GD, Duc  TP, Campbell  JI, El Tayeb  MA, Von Kalckreuth  V, et al. Multicountry distribution and characterization of extended-spectrum β-lactamase-associated Gram-negative bacteria from bloodstream infections in sub-Saharan Africa. Clin Infect Dis. 2019;69(Suppl 6):S44958. DOIPubMedGoogle Scholar
  5. Villegas  MV, Kattan  JN, Quinteros  MG, Casellas  JM. Prevalence of extended-spectrum beta-lactamases in South America. Clin Microbiol Infect. 2008;14(Suppl 1):1548. DOIPubMedGoogle Scholar
  6. Lob  SH, Nicolle  LE, Hoban  DJ, Kazmierczak  KM, Badal  RE, Sahm  DF. Susceptibility patterns and ESBL rates of Escherichia coli from urinary tract infections in Canada and the United States, SMART 2010-2014. Diagn Microbiol Infect Dis. 2016;85:45965. DOIPubMedGoogle Scholar
  7. Hilty  M, Betsch  BY, Bögli-Stuber  K, Heiniger  N, Stadler  M, Küffer  M, et al. Transmission dynamics of extended-spectrum β-lactamase-producing Enterobacteriaceae in the tertiary care hospital and the household setting. Clin Infect Dis. 2012;55:96775. DOIPubMedGoogle Scholar
  8. Rodríguez-Baño  J, Navarro  MD, Romero  L, Martínez-Martínez  L, Muniain  MA, Perea  EJ, et al. Epidemiology and clinical features of infections caused by extended-spectrum beta-lactamase-producing Escherichia coli in nonhospitalized patients. J Clin Microbiol. 2004;42:108994. DOIPubMedGoogle Scholar
  9. Pitout  JD, Gregson  DB, Church  DL, Elsayed  S, Laupland  KB. Community-wide outbreaks of clonally related CTX-M-14 beta-lactamase-producing Escherichia coli strains in the Calgary health region. J Clin Microbiol. 2005;43:28449. DOIPubMedGoogle Scholar
  10. Doi  Y, Park  YS, Rivera  JI, Adams-Haduch  JM, Hingwe  A, Sordillo  EM, et al. Community-associated extended-spectrum β-lactamase-producing Escherichia coli infection in the United States. Clin Infect Dis. 2013;56:6418. DOIPubMedGoogle Scholar
  11. Arcilla  MS, van Hattem  JM, Haverkate  MR, Bootsma  MCJ, van Genderen  PJJ, Goorhuis  A, et al. Import and spread of extended-spectrum β-lactamase-producing Enterobacteriaceae by international travellers (COMBAT study): a prospective, multicentre cohort study. Lancet Infect Dis. 2017;17:7885. DOIPubMedGoogle Scholar
  12. van Duijkeren  E, Wielders  CCH, Dierikx  CM, van Hoek  AHAM, Hengeveld  P, Veenman  C, et al. Long-term carriage of extended-spectrum β-lactamase-producing Escherichia coli and Klebsiella pneumoniae in the general population in the Netherlands. Clin Infect Dis. 2018;66:136876. DOIPubMedGoogle Scholar
  13. Martischang  R, Riccio  ME, Abbas  M, Stewardson  AJ, Kluytmans  JAJW, Harbarth  S. Household carriage and acquisition of extended-spectrum β-lactamase-producing Enterobacteriaceae: A systematic review. Infect Control Hosp Epidemiol. 2020;41:28694. DOIPubMedGoogle Scholar
  14. Day  MJ, Hopkins  KL, Wareham  DW, Toleman  MA, Elviss  N, Randall  L, et al. Extended-spectrum β-lactamase-producing Escherichia coli in human-derived and foodchain-derived samples from England, Wales, and Scotland: an epidemiological surveillance and typing study. Lancet Infect Dis. 2019;19:132535. DOIPubMedGoogle Scholar
  15. Johnson  JR, Sannes  MR, Croy  C, Johnston  B, Clabots  C, Kuskowski  MA, et al. Antimicrobial drug-resistant Escherichia coli from humans and poultry products, Minnesota and Wisconsin, 2002-2004. Emerg Infect Dis. 2007;13:83846. DOIPubMedGoogle Scholar
  16. Fuentes  MD, Gutierrez  S, Sahagun  D, Gomez  J, Mendoza  J, Ellis  CC, et al. Assessment of antibiotic levels, multi-drug resistant bacteria and genetic biomarkers in the waters of the Rio Grande River between the United States–Mexico border. J Health Pollut. 2019;9:190912. DOIPubMedGoogle Scholar
  17. Jørgensen  SB, Søraas  AV, Arnesen  LS, Leegaard  TM, Sundsfjord  A, Jenum  PA. A comparison of extended spectrum β-lactamase producing Escherichia coli from clinical, recreational water and wastewater samples associated in time and location. PLoS One. 2017;12:e0186576. DOIPubMedGoogle Scholar
  18. Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing, 30th edition (M100). Wayne (PA): The Institute; 2020.
  19. US Census Bureau. American Community Survey 5-year estimates. 2017 [cited 2020 Oct 1]. https://data.census.gov
  20. Kiffer  CR, Camargo  EC, Shimakura  SE, Ribeiro  PJ Jr, Bailey  TC, Pignatari  AC, et al. A spatial approach for the epidemiology of antibiotic use and resistance in community-based studies: the emergence of urban clusters of Escherichia coli quinolone resistance in Sao Paulo, Brasil. Int J Health Geogr. 2011;10:17. DOIPubMedGoogle Scholar
  21. Terahara  F, Nishiura  H. Fluoroquinolone consumption and Escherichia coli resistance in Japan: an ecological study. BMC Public Health. 2019;19:426. DOIPubMedGoogle Scholar
  22. Logan  LK, Medernach  RL, Domitrovic  TN, Rispens  JR, Hujer  AM, Qureshi  NK, et al. The clinical and molecular epidemiology of CTX-M-9 group producing Enterobacteriaceae infections in children. Infect Dis Ther. 2019;8:24354. DOIPubMedGoogle Scholar
  23. Ho  PL, Chu  YP, Lo  WU, Chow  KH, Law  PY, Tse  CW, et al. High prevalence of Escherichia coli sequence type 131 among antimicrobial-resistant E. coli isolates from geriatric patients. J Med Microbiol. 2015;64:2437. DOIPubMedGoogle Scholar
  24. Calbo  E, Romaní  V, Xercavins  M, Gómez  L, Vidal  CG, Quintana  S, et al. Risk factors for community-onset urinary tract infections due to Escherichia coli harbouring extended-spectrum beta-lactamases. J Antimicrob Chemother. 2006;57:7803. DOIPubMedGoogle Scholar
  25. Rodríguez-Baño  J, Picón  E, Gijón  P, Hernández  JR, Ruíz  M, Peña  C, et al.; Spanish Network for Research in Infectious Diseases (REIPI). Community-onset bacteremia due to extended-spectrum beta-lactamase-producing Escherichia coli: risk factors and prognosis. Clin Infect Dis. 2010;50:408. DOIPubMedGoogle Scholar
  26. Goodman  KE, Lessler  J, Cosgrove  SE, Harris  AD, Lautenbach  E, Han  JH, et al.; Antibacterial Resistance Leadership Group. A clinical decision tree to predict whether a bacteremic patient is infected with an extended-spectrum β-lactamase-producing organism. Clin Infect Dis. 2016;63:896903. DOIPubMedGoogle Scholar
  27. Otter  JA, Natale  A, Batra  R, Tosas Auguet  O, Dyakova  E, Goldenberg  SD, et al. Individual- and community-level risk factors for ESBL Enterobacteriaceae colonization identified by universal admission screening in London. Clin Microbiol Infect. 2019;25:125965. DOIPubMedGoogle Scholar
  28. Rottier  WC, Ammerlaan  HS, Bonten  MJ. Effects of confounders and intermediates on the association of bacteraemia caused by extended-spectrum β-lactamase-producing Enterobacteriaceae and patient outcome: a meta-analysis. J Antimicrob Chemother. 2012;67:131120. DOIPubMedGoogle Scholar
  29. García  C, Horna  G, Linares  E, Ramírez  R, Tapia  E, Velásquez  J, et al. Antimicrobial drug resistance in Peru. Emerg Infect Dis. 2012;18:5201. DOIPubMedGoogle Scholar
  30. Winokur  PL, Canton  R, Casellas  JM, Legakis  N. Variations in the prevalence of strains expressing an extended-spectrum beta-lactamase phenotype and characterization of isolates from Europe, the Americas, and the Western Pacific region. Clin Infect Dis. 2001;32(Suppl 2):S94103. DOIPubMedGoogle Scholar
  31. Mainous  AG III, Cheng  AY, Garr  RC, Tilley  BC, Everett  CJ, McKee  MD. Nonprescribed antimicrobial drugs in Latino community, South Carolina. Emerg Infect Dis. 2005;11:8838. DOIPubMedGoogle Scholar

Main Article

Page created: May 08, 2021
Page updated: July 18, 2021
Page reviewed: July 18, 2021
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.
file_external