Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 27, Number 9—September 2021
Research

Human and Porcine Transmission of Clostridioides difficile Ribotype 078, Europe

Geraldine Moloney1Comments to Author , David W. Eyre1, Micheál Mac Aogáin, Máire C. McElroy, Alison Vaughan, Tim E.A. Peto, Derrick W. Crook, and Thomas R. Rogers
Author affiliations: Trinity College Dublin, Dublin, Ireland (G. Moloney, M. Mac Aogáin, T.R. Rogers); University of Oxford, Oxford, UK (D.W. Eyre, A. Vaughan, T.E.A. Peto, D.W. Crook); Central Veterinary Research Laboratory, Celbridge, Ireland (M.C. McElroy); St. James’s Hospital, Dublin (T.R. Rogers)

Main Article

Table 1

Countries from which Clostridioides difficile 078 isolates originated, their identified sources, and date of collection*

Origin and source of isolates Timeframe of collection No. isolates
Ireland (11)
HA-CDI 2012‒2016 48†
Porcine 2014–2015 20
CA-CDI
2015 Apr–Jun
5
Netherlands (10)
CDI 2002–2011 31
Porcine 2009, 2011 20
Healthy farmers
2011
16
EUCLID (8), HA-CDI 2012 Dec‒2013 Aug
Germany 9
Italy 7
United Kingdom 4
France 3
Portugal 3
Ireland 2
Spain 1
Greece 1
Austria 1

*CDI, C. difficile infection; EUCLID, European, Multi-Center, Prospective, Biannual, Point-Prevalence Study of Clostridium difficile Infection in Hospitalized Patients with Diarrhea; HA-CDI, hospital-associated CDI. †Includes 9 isolates from HA-CDI cases (11).

Main Article

References
  1. Eyre  DW, Cule  ML, Wilson  DJ, Griffiths  D, Vaughan  A, O’Connor  L, et al. Diverse sources of C. difficile infection identified on whole-genome sequencing. N Engl J Med. 2013;369:1195205. DOIPubMedGoogle Scholar
  2. Moloney  G, Mac Aogáin  M, Kelleghan  M, O’Connell  B, Hurley  C, Montague  E, et al. Possible interplay between hospital and community transmission of a novel Clostridium difficile sequence type 295 recognized by next-generation sequencing. Infect Control Hosp Epidemiol. 2016;37:6804. DOIPubMedGoogle Scholar
  3. Knight  DR, Riley  TV. Genomic delineation of zoonotic origins of Clostridium difficile. Front Public Health. 2019;7:164. DOIPubMedGoogle Scholar
  4. European Centre for Disease Prevention and Control. Healthcare-associated infections: Clostridium difficile infections. In: Annual epidemiological report for 2016. Stockholm: The Centre, 2018 [cited 2021 Jun 5]. https://www.ecdc.europa.eu/en/publications-data/healthcare-associated-infections-clostridium-difficile-infections-annual
  5. Alam  MJ, Walk  ST, Endres  BT, Basseres  E, Khaleduzzaman  M, Amadio  J, et al. Community environmental contamination of toxigenic Clostridium difficile. Open Forum Infect Dis. 2017;4:ofx018. DOIPubMedGoogle Scholar
  6. al Saif  N, Brazier  JS. The distribution of Clostridium difficile in the environment of South Wales. J Med Microbiol. 1996;45:1337. DOIPubMedGoogle Scholar
  7. Dingle  KE, Didelot  X, Quan  TP, Eyre  DW, Stoesser  N, Golubchik  T, et al.; Modernising Medical Microbiology Informatics Group. Effects of control interventions on Clostridium difficile infection in England: an observational study. Lancet Infect Dis. 2017;17:41121. DOIPubMedGoogle Scholar
  8. Eyre  DW, Davies  KA, Davis  G, Fawley  WN, Dingle  KE, De Maio  N, et al.; EUCLID Study Group. Two distinct patterns of Clostridium difficile diversity across Europe indicating contrasting routes of spread. Clin Infect Dis. 2018;67:103544. DOIPubMedGoogle Scholar
  9. McElroy  MC, Hill  M, Moloney  G, Mac Aogáin  M, McGettrick  S, O’Doherty  Á, et al. Typhlocolitis associated with Clostridium difficile ribotypes 078 and 110 in neonatal piglets from a commercial Irish pig herd. Ir Vet J. 2016;69:10. DOIPubMedGoogle Scholar
  10. Knetsch  CW, Connor  TR, Mutreja  A, van Dorp  SM, Sanders  IM, Browne  HP, et al. Whole genome sequencing reveals potential spread of Clostridium difficile between humans and farm animals in the Netherlands, 2002 to 2011. Euro Surveill. 2014;19:20954. DOIPubMedGoogle Scholar
  11. Mac Aogáin  M, Moloney  G, Kilkenny  S, Kelleher  M, Kelleghan  M, Boyle  B, et al. Whole-genome sequencing improves discrimination of relapse from reinfection and identifies transmission events among patients with recurrent Clostridium difficile infections. J Hosp Infect. 2015;90:10816. DOIPubMedGoogle Scholar
  12. De Silva  D, Peters  J, Cole  K, Cole  MJ, Cresswell  F, Dean  G, et al. Whole-genome sequencing to determine transmission of Neisseria gonorrhoeae: an observational study. Lancet Infect Dis. 2016;16:1295303. DOIPubMedGoogle Scholar
  13. Martin  JSH, Eyre  DW, Fawley  WN, Griffiths  D, Davies  K, Mawer  DPC, et al. Patient and strain characteristics associated with Clostridium difficile transmission and adverse outcomes. Clin Infect Dis. 2018;67:137987. DOIPubMedGoogle Scholar
  14. Khanna  S, Pardi  DS, Aronson  SL, Kammer  PP, Baddour  LM. Outcomes in community-acquired Clostridium difficile infection. Aliment Pharmacol Ther. 2012;35:6138. DOIPubMedGoogle Scholar
  15. Anderson  DJ, Rojas  LF, Watson  S, Knelson  LP, Pruitt  S, Lewis  SS, et al.; CDC Prevention Epicenters Program. Identification of novel risk factors for community-acquired Clostridium difficile infection using spatial statistics and geographic information system analyses. PLoS One. 2017;12:e0176285. DOIPubMedGoogle Scholar
  16. van Dorp  SM, Hensgens  MPM, Dekkers  OM, Demeulemeester  A, Buiting  A, Bloembergen  P, et al. Spatial clustering and livestock exposure as risk factor for community-acquired Clostridium difficile infection. Clin Microbiol Infect. 2019;25:60712. DOIPubMedGoogle Scholar
  17. Knetsch  CW, Kumar  N, Forster  SC, Connor  TR, Browne  HP, Harmanus  C, et al. Zoonotic transfer of Clostridium difficile harboring antimicrobial resistance between farm animals and humans. J Clin Microbiol. 2018;56:e0138417. DOIPubMedGoogle Scholar
  18. Knight  DR, Squire  MM, Collins  DA, Riley  TV. Genome analysis of Clostridium difficile PCR ribotype 014 lineage in Australian pigs and humans reveals a diverse genetic repertoire and signatures of long-range interspecies transmission. Front Microbiol. 2017;7:2138. DOIPubMedGoogle Scholar
  19. Dharmasena  M, Jiang  X. Isolation of toxigenic Clostridium difficile from animal manure and composts being used as biological soil amendments. Appl Environ Microbiol. 2018;84:e0073818. DOIPubMedGoogle Scholar
  20. Usui  M, Kawakura  M, Yoshizawa  N, San  LL, Nakajima  C, Suzuki  Y, et al. Survival and prevalence of Clostridium difficile in manure compost derived from pigs. Anaerobe. 2017;43:1520. DOIPubMedGoogle Scholar
  21. Knetsch  CW, Lawley  TD, Hensgens  MP, Corver  J, Wilcox  MW, Kuijper  EJ. Current application and future perspectives of molecular typing methods to study Clostridium difficile infections. Euro Surveill. 2013;18:20381. DOIPubMedGoogle Scholar
  22. Moradigaravand  D, Gouliouris  T, Ludden  C, Reuter  S, Jamrozy  D, Blane  B, et al. Genomic survey of Clostridium difficile reservoirs in the East of England implicates environmental contamination of wastewater treatment plants by clinical lineages. Microb Genom. 2018;4:4. DOIPubMedGoogle Scholar
  23. Hensgens  MP, Keessen  EC, Squire  MM, Riley  TV, Koene  MG, de Boer  E, et al.; European Society of Clinical Microbiology and Infectious Diseases Study Group for Clostridium difficile (ESGCD). Clostridium difficile infection in the community: a zoonotic disease? Clin Microbiol Infect. 2012;18:63545. DOIPubMedGoogle Scholar
  24. Dingle  KE, Didelot  X, Quan  TP, Eyre  DW, Stoesser  N, Marwick  CA, et al. A Role for tetracycline selection in recent Evolution of agriculture-associated Clostridium difficile PCR ribotype 078. MBio. 2019;10:e0279018. DOIPubMedGoogle Scholar
  25. Weese  JS. Clostridium (Clostridioides) difficile in animals. J Vet Diagn Invest. 2020;32:21321. DOIPubMedGoogle Scholar

Main Article

1These authors contributed equally to this article.

Page created: June 07, 2021
Page updated: August 17, 2021
Page reviewed: August 17, 2021
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.
file_external