Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 28, Number 11—November 2022
Dispatch

Seroincidence of Enteric Fever, Juba, South Sudan

Kristen AiemjoyComments to Author , John Rumunu, Juma John Hassen, Kirsten E. Wiens, Denise Garrett, Polina Kamenskaya, Jason B. Harris, Andrew S. Azman, Peter Teunis, Jessica C. Seidman, Joseph F. Wamala, Jason R. Andrews, and Richelle C. Charles
Author affiliations: University of California Davis School of Medicine, Davis, California, USA (K. Aiemjoy); Republic of South Sudan Ministry of Health, Juba, South Sudan (J. Rumunu); World Health Organization, Juba (J.J. Hassen, J.F. Wamala); Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA (K.E. Wiens, A.S. Azman); Sabin Vaccine Institute, Washington, DC, USA (D. Garrett, J.C. Seidman); Massachusetts General Hospital, Boston, Massachusetts, USA (P. Kamenskaya, J.B. Harris, R.C. Charles); Emory University, Atlanta, Georgia, USA (P. Teunis); Stanford University School of Medicine, Stanford, California, USA (J.R. Andrews)

Main Article

Figure 1

Age-dependent hemolysin E (HlyE) IgA (top) and IgG (bottom) responses for participants in study of seroincidence of enteric fever, Juba, South Sudan, 2020, compared with those for blood culture-confirmed cases and controls. A) Cross-sectional antibody responses to HlyE IgA (top) and IgG (bottom) by age measured from a serosurvey of 1,290 persons in Juba, South Sudan, from samples during collected during August 7–September 2, 2020. Each point indicates an individual sample. Horizontal lines within boxes indicate medians; box tops and bottoms indicate IQRs; error bars indicate 95% CIs. B) Density of antibody responses HlyE IgA (top) and IgG (bottom) among 1,410 blood-culture confirmed enteric fever cases in Bangladesh, Nepal, Pakistan, and Ghana 8–12 months after symptom onset as reported in (12) and a control population from 3 United States groups: 48 children 1–5 years of age who had first degree relatives with celiac disease, enrolled nationally; 31 healthy controls, children and young adults 2–18 years of age, enrolled at Massachusetts General Hospital (Appendix reference 17); and a population-based sample of 205 children and adults 3–50 years of age participating in a SARS-CoV serosurvey in California, USA. The dashed blue line across all panels represents the mean +3 SD of HlyE IgA and IgG values observed in the pediatric control population. HlyE, hemolysin E.

Figure 1. Age-dependent hemolysin E (HlyE) IgA (top) and IgG (bottom) responses for participants in study of seroincidence of enteric fever, Juba, South Sudan, 2020, compared with those for blood culture-confirmed cases and controls. A) Cross-sectional antibody responses to HlyE IgA (top) and IgG (bottom) by age measured from a serosurvey of 1,290 persons in Juba, South Sudan, from samples during collected during August 7–September 2, 2020. Each point indicates an individual sample. Horizontal lines within boxes indicate medians; box tops and bottoms indicate IQRs; error bars indicate 95% CIs. B) Density of antibody responses HlyE IgA (top) and IgG (bottom) among 1,410 blood-culture confirmed enteric fever cases in Bangladesh, Nepal, Pakistan, and Ghana 8–12 months after symptom onset as reported in (12) and a control population from 3 United States groups: 48 children 1–5 years of age who had first degree relatives with celiac disease, enrolled nationally; 31 healthy controls, children and young adults 2–18 years of age, enrolled at Massachusetts General Hospital (Appendix reference 17); and a population-based sample of 205 children and adults 3–50 years of age participating in a SARS-CoV serosurvey in California, USA. The dashed blue line across all panels represents the mean +3 SD of HlyE IgA and IgG values observed in the pediatric control population. HlyE, hemolysin E.

Main Article

References
  1. Stanaway  JD, Reiner  RC, Blacker  BF, Goldberg  EM, Khalil  IA, Troeger  CE, et al.; GBD 2017 Typhoid and Paratyphoid Collaborators. The global burden of typhoid and paratyphoid fevers: a systematic analysis for the Global Burden of Disease Study 2017. Lancet Infect Dis. 2019;19:36981. DOIPubMedGoogle Scholar
  2. Antillon  M, Saad  NJ, Baker  S, Pollard  AJ, Pitzer  VE. The relationship between blood sample volume and diagnostic sensitivity of blood culture for typhoid and paratyphoid fever: a systematic review and meta-analysis. J Infect Dis. 2018;218(suppl_4):S25567. DOIPubMedGoogle Scholar
  3. Voysey  M, Pant  D, Shakya  M, Liu  X, Colin-Jones  R, Theiss-Nyland  K, et al. Under-detection of blood culture-positive enteric fever cases: The impact of missing data and methods for adjusting incidence estimates. PLoS Negl Trop Dis. 2020;14:e0007805. DOIPubMedGoogle Scholar
  4. Azman  AS, Bouhenia  M, Iyer  AS, Rumunu  J, Laku  RL, Wamala  JF, et al. High hepatitis E seroprevalence among displaced persons in South Sudan. Am J Trop Med Hyg. 2017;96:1296301. DOIPubMedGoogle Scholar
  5. Abubakar  A, Bwire  G, Azman  AS, Bouhenia  M, Deng  LL, Wamala  JF, et al. Cholera epidemic in South Sudan and Uganda and need for international collaboration in cholera control. Emerg Infect Dis. 2018;24:8837. DOIPubMedGoogle Scholar
  6. Kumar  S, Nodoushani  A, Khanam  F, DeCruz  AT, Lambotte  P, Scott  R, et al. Evaluation of a rapid point-of-care multiplex immunochromatographic assay for the diagnosis of enteric fever. MSphere. 2020;5:e0025320. DOIPubMedGoogle Scholar
  7. Andrews  JR, Khanam  F, Rahman  N, Hossain  M, Bogoch  II, Vaidya  K, et al. Plasma immunoglobulin A responses against 2 Salmonella Typhi antigens identify patients with typhoid fever. Clin Infect Dis. 2019;68:94955. DOIPubMedGoogle Scholar
  8. McClelland  M, Sanderson  KE, Clifton  SW, Latreille  P, Porwollik  S, Sabo  A, et al. Comparison of genome degradation in Paratyphi A and Typhi, human-restricted serovars of Salmonella enterica that cause typhoid. Nat Genet. 2004;36:126874. DOIPubMedGoogle Scholar
  9. Charles  RC, Liang  L, Khanam  F, Sayeed  MA, Hung  C, Leung  DT, et al. Immunoproteomic analysis of antibody in lymphocyte supernatant in patients with typhoid fever in Bangladesh. Clin Vaccine Immunol. 2014;21:2805. DOIPubMedGoogle Scholar
  10. Charles  RC, Sheikh  A, Krastins  B, Harris  JB, Bhuiyan  MS, LaRocque  RC, et al. Characterization of anti-Salmonella enterica serotype Typhi antibody responses in bacteremic Bangladeshi patients by an immunoaffinity proteomics-based technology. Clin Vaccine Immunol. 2010;17:118895. DOIPubMedGoogle Scholar
  11. Charles  RC, Sultana  T, Alam  MM, Yu  Y, Wu-Freeman  Y, Bufano  MK, et al. Identification of immunogenic Salmonella enterica serotype Typhi antigens expressed in chronic biliary carriers of S. Typhi in Kathmandu, Nepal. PLoS Negl Trop Dis. 2013;7:e2335. DOIPubMedGoogle Scholar
  12. Aiemjoy  K, Seidman  JC, Saha  S, Munira  SJ, Islam Sajib  MS, Sium  SMA, et al. Estimating typhoid incidence from community-based serosurveys: a multicohort study. Lancet Microbe. 2022;3:e57887. DOIPubMedGoogle Scholar
  13. Wiens  KE, Mawien  PN, Rumunu  J, Slater  D, Jones  FK, Moheed  S, et al. Seroprevalence of severe acute respiratory syndrome coronavirus 2 IgG in Juba, South Sudan. Emerg Infect Dis. 2021;27:1598606. DOIPubMedGoogle Scholar
  14. Garrett  DO, Longley  AT, Aiemjoy  K, Yousafzai  MT, Hemlock  C, Yu  AT, et al. Incidence of typhoid and paratyphoid fever in Bangladesh, Nepal, and Pakistan: results of the Surveillance for Enteric Fever in Asia Project. Lancet Glob Health. 2022;10:e97888. DOIPubMedGoogle Scholar
  15. Marks  F, von Kalckreuth  V, Aaby  P, Adu-Sarkodie  Y, El Tayeb  MA, Ali  M, et al. Incidence of invasive salmonella disease in sub-Saharan Africa: a multicentre population-based surveillance study. Lancet Glob Health. 2017;5:e31023. DOIPubMedGoogle Scholar

Main Article

Page created: October 13, 2022
Page updated: October 24, 2022
Page reviewed: October 24, 2022
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.
file_external