Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 28, Number 11—November 2022
Dispatch

Cluster of Norovirus Genogroup IX Outbreaks in Long-Term Care Facilities, Utah, USA, 2021

BreAnne Osborn1Comments to Author , Chao-Yang Pan1, April Hatada, Jennifer Hatfield, Jenni Wagner, Kelly Oakeson, Anna Montmayeur, Christina Morales, and Jan Vinjé
Author affiliations: Utah Department of Health, Salt Lake City, Utah, USA (B. Osborn, J. Wagner, K. Oakeson); California Department of Public Health, Richmond, California, USA (C.-Y. Pan, A. Hatada, C. Morales); Utah County Health Department, Provo, Utah, USA (J. Hatfield); Centers for Disease Control and Prevention, Atlanta, Georgia, USA (A. Montmayeur, J. Vinjé)

Main Article

Figure 2

Phylogenetic comparisons of norovirus genes in study of cluster of norovirus genogroup IX outbreaks in long-term care facilities, Utah, USA, 2021. We generated phylogenetic trees by using the maximum-likelihood method and Tamura-Nei distance model (15). We compared nucleotide sequences of the RdRp gene (1,430 nt) (A) and major capsid gene (1,668 nt) (B) from the 12 sequences obtained from the 4 LTCF outbreaks with 33 GIX strains obtained from GenBank. The bootstrap percentages are shown next to the branches. We generated initial trees automatically by applying neighbor-joining algorithms to a matrix of pairwise distances estimated by using the maximum composite-likelihood approach and then selecting the topology with the superior log-likelihood value. We conducted evolutionary analyses by using MEGA11 software (15). Scale bars indicate nucleotide substitutions per site.

Figure 2. Phylogenetic comparisons of norovirus genes in study of cluster of norovirus genogroup IX outbreaks in long-term care facilities, Utah, USA, 2021. We generated phylogenetic trees by using the maximum-likelihood method and Tamura-Nei distance model (15). We compared nucleotide sequences of the RdRp gene (1,430 nt) (A) and major capsid gene (1,668 nt) (B) from the 12 sequences obtained from the 4 LTCF outbreaks with 33 GIX strains obtained from GenBank. The bootstrap percentages are shown next to the branches. We generated initial trees automatically by applying neighbor-joining algorithms to a matrix of pairwise distances estimated by using the maximum composite-likelihood approach and then selecting the topology with the superior log-likelihood value. We conducted evolutionary analyses by using MEGA11 software (15). Scale bars indicate nucleotide substitutions per site.

Main Article

References
  1. Ahmed  SM, Hall  AJ, Robinson  AE, Verhoef  L, Premkumar  P, Parashar  UD, et al. Global prevalence of norovirus in cases of gastroenteritis: a systematic review and meta-analysis. Lancet Infect Dis. 2014;14:72530. DOIPubMedGoogle Scholar
  2. Wikswo  ME, Kambhampati  A, Shioda  K, Walsh  KA, Bowen  A, Hall  AJ; Centers for Disease Control and Prevention (CDC). Outbreaks of acute gastroenteritis transmitted by person-to-person contact, environmental contamination, and unknown modes of transmission—United States, 2009–2013. MMWR Surveill Summ. 2015;64:116. DOIPubMedGoogle Scholar
  3. Tohma  K, Lepore  CJ, Martinez  M, Degiuseppe  JI, Khamrin  P, Saito  M, et al. Genome-wide analyses of human noroviruses provide insights on evolutionary dynamics and evidence of coexisting viral populations evolving under recombination constraints. PLoS Pathog. 2021;17:e1009744. DOIPubMedGoogle Scholar
  4. Chhabra  P, de Graaf  M, Parra  GI, Chan  MC, Green  K, Martella  V, et al. Updated classification of norovirus genogroups and genotypes. J Gen Virol. 2019;100:1393406. DOIPubMedGoogle Scholar
  5. Cannon  JL, Barclay  L, Collins  NR, Wikswo  ME, Castro  CJ, Magaña  LC, et al. Genetic and epidemiologic trends of norovirus outbreaks in the United States from 2013 to 2016 demonstrated emergence of novel GII.4 recombinant viruses. J Clin Microbiol. 2017;55:220821. DOIPubMedGoogle Scholar
  6. Jin  M, Wu  S, Kong  X, Xie  H, Fu  J, He  Y, et al. Norovirus outbreak surveillance, China, 2016–2018. Emerg Infect Dis. 2020;26:43745. DOIPubMedGoogle Scholar
  7. Kabue  JP, Meader  E, Hunter  PR, Potgieter  N. Genetic characterisation of Norovirus strains in outpatient children from rural communities of Vhembe district/South Africa, 2014-2015. J Clin Virol. 2017;94:1006. DOIPubMedGoogle Scholar
  8. Sarmento  SK, de Andrade  JDSR, Miagostovich  MP, Fumian  TM. Virological and epidemiological features of norovirus infections in Brazil, 2017–2018. Viruses. 2021;13:1724. DOIPubMedGoogle Scholar
  9. Supadej  K, Khamrin  P, Kumthip  K, Kochjan  P, Yodmeeklin  A, Ushijima  H, et al. Wide variety of recombinant strains of norovirus GII in pediatric patients hospitalized with acute gastroenteritis in Thailand during 2005 to 2015. Infect Genet Evol. 2017;52:4451. DOIPubMedGoogle Scholar
  10. Vega  E, Barclay  L, Gregoricus  N, Shirley  SH, Lee  D, Vinjé  J. Genotypic and epidemiologic trends of norovirus outbreaks in the United States, 2009 to 2013. J Clin Microbiol. 2014;52:14755. DOIPubMedGoogle Scholar
  11. Chhabra  P, Browne  H, Huynh  T, Diez-Valcarce  M, Barclay  L, Kosek  MN, et al. Single-step RT-PCR assay for dual genotyping of GI and GII norovirus strains. J Clin Virol. 2021;134:104689. DOIPubMedGoogle Scholar
  12. Tatusov  RL, Chhabra  P, Diez-Valcarce  M, Barclay  L, Cannon  JL, Vinjé  J. Human Calicivirus Typing tool: A web-based tool for genotyping human norovirus and sapovirus sequences. J Clin Virol. 2021;134:104718. DOIPubMedGoogle Scholar
  13. Parra  GI, Squires  RB, Karangwa  CK, Johnson  JA, Lepore  CJ, Sosnovtsev  SV, et al. Static and evolving norovirus genotypes: implications for epidemiology and immunity. PLoS Pathog. 2017;13:e1006136. DOIPubMedGoogle Scholar
  14. Wagner  DD, Marine  RL, Ramos  E, Ng  TFF, Castro  CJ, Okomo-Adhiambo  M, et al. VPipe: an automated bioinformatics platform for assembly and management of viral next-generation sequencing data. Microbiol Spectr. 2022;10:e0256421. DOIPubMedGoogle Scholar
  15. Tamura  K, Stecher  G, Kumar  S. MEGA11: molecular evolutionary genetics analysis version 11. Mol Biol Evol. 2021;38:30227. DOIPubMedGoogle Scholar

Main Article

1These first authors contributed equally to this article.

Page created: September 08, 2022
Page updated: October 24, 2022
Page reviewed: October 24, 2022
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.
file_external