Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 28, Number 12—December 2022
Research

Continued Circulation of Tick-Borne Encephalitis Virus Variants and Detection of Novel Transmission Foci, the Netherlands

Helen J. EsserComments to Author , Stephanie M. Lim, Ankje de Vries, Hein Sprong, Dinant J. Dekker, Emily L. Pascoe, Julian W. Bakker, Vanessa Suin, Eelco Franz, Byron E.E. Martina, and Constantianus J.M. Koenraadt
Author affiliations: Wageningen University and Research, Wageningen, the Netherlands (H.J. Esser, D.J. Dekker, E.L. Pascoe, J.W. Bakker, C.J.M. Koenraadt); Artemis One Health Research Institute, Delft, the Netherlands (S.M. Lim, B.E.E. Martina); National Institute for Public Health and the Environment, Bilthoven, the Netherlands (A. de Vries, H. Sprong, E. Franz); Sciensano, Brussels, Belgium (V. Suin)

Main Article

Figure 1

Geographic distribution of tick-borne encephalitis virus (TBEV) in the Netherlands based on sampling of ticks (A), rodents (B), roe deer (C), and reported human (D) tick-borne encephalitis cases. Stars indicate TBEV RNA–positive tick pools or rodent samples. Closed circles indicate serum samples that tested positive in TBEV serum neutralization tests. White circles indicate negative test results. Data for roe deer were reproduced from Rijks et al. (14) with permission. Maps were constructed with Arc-GIS software (ESRI, https://www.esri.com).

Figure 1. Geographic distribution of tick-borne encephalitis virus (TBEV) in the Netherlands based on sampling of ticks (A), rodents (B), roe deer (C), and reported human (D) tick-borne encephalitis cases. Stars indicate TBEV RNA–positive tick pools or rodent samples. Closed circles indicate serum samples that tested positive in TBEV serum neutralization tests. White circles indicate negative test results. Data for roe deer were reproduced from Rijks et al. (14) with permission. Maps were constructed with Arc-GIS software (ESRI, https://www.esri.com).

Main Article

References
  1. Bogovic  P, Strle  F. Tick-borne encephalitis: A review of epidemiology, clinical characteristics, and management. World J Clin Cases. 2015;3:43041. DOIPubMedGoogle Scholar
  2. Beauté  J, Spiteri  G, Warns-Petit  E, Zeller  H. Tick-borne encephalitis in Europe, 2012 to 2016. Euro Surveill. 2018;23:1800201. DOIPubMedGoogle Scholar
  3. Süss  J. Tick-borne encephalitis 2010: epidemiology, risk areas, and virus strains in Europe and Asia-an overview. Ticks Tick Borne Dis. 2011;2:215. DOIPubMedGoogle Scholar
  4. Rizzoli  A, Hauffe  HC, Tagliapietra  V, Neteler  M, Rosà  R. Forest structure and roe deer abundance predict tick-borne encephalitis risk in Italy. PLoS One. 2009;4:e4336. DOIPubMedGoogle Scholar
  5. Šumilo  D, Bormane  A, Asokliene  L, Vasilenko  V, Golovljova  I, Avsic-Zupanc  T, et al. Socio-economic factors in the differential upsurge of tick-borne encephalitis in Central and Eastern Europe. Rev Med Virol. 2008;18:8195. DOIPubMedGoogle Scholar
  6. Jaenson  TGT, Petersson  EH, Jaenson  DGE, Kindberg  J, Pettersson  JHO, Hjertqvist  M, et al. The importance of wildlife in the ecology and epidemiology of the TBE virus in Sweden: incidence of human TBE correlates with abundance of deer and hares. Parasit Vectors. 2018;11:477. DOIPubMedGoogle Scholar
  7. Randolph  SE, Miklisová  D, Lysy  J, Rogers  DJ, Labuda  M. Incidence from coincidence: patterns of tick infestations on rodents facilitate transmission of tick-borne encephalitis virus. Parasitology. 1999;118:17786. DOIPubMedGoogle Scholar
  8. Holding  M, Dowall  SD, Medlock  JM, Carter  DP, Pullan  ST, Lewis  J, et al. Tick-borne encephalitis virus, United Kingdom. Emerg Infect Dis. 2020;26:906. DOIPubMedGoogle Scholar
  9. Dekker  M, Laverman  GD, de Vries  A, Reimerink  J, Geeraedts  F. Emergence of tick-borne encephalitis (TBE) in the Netherlands. Ticks Tick Borne Dis. 2019;10:1769. DOIPubMedGoogle Scholar
  10. Randolph  SE. The shifting landscape of tick-borne zoonoses: tick-borne encephalitis and Lyme borreliosis in Europe. Philos Trans R Soc Lond B Biol Sci. 2001;356:104556. DOIPubMedGoogle Scholar
  11. Reusken  C, Reimerink  J, Verduin  C, Sabbe  L, Cleton  N, Koopmans  M. Case report: tick-borne encephalitis in two Dutch travellers returning from Austria, Netherlands, July and August 2011. Euro Surveill. 2011;16:20003. DOIPubMedGoogle Scholar
  12. van der Poel  WH, Van der Heide  R, Bakker  D, De Looff  M, De Jong  J, Van Manen  N, et al. Attempt to detect evidence for tick-borne encephalitis virus in ticks and mammalian wildlife in The Netherlands. Vector Borne Zoonotic Dis. 2005;5:5864. DOIPubMedGoogle Scholar
  13. Jahfari  S, de Vries  A, Rijks  JM, Van Gucht  S, Vennema  H, Sprong  H, et al. Tick-borne encephalitis virus in ticks and roe deer, the Netherlands. Emerg Infect Dis. 2017;23:102830. DOIPubMedGoogle Scholar
  14. Rijks  JM, Montizaan  MGE, Bakker  N, de Vries  A, Van Gucht  S, Swaan  C, et al. Tick-borne encephalitis virus antibodies in roe deer, the Netherlands. Emerg Infect Dis. 2019;25:3425. DOIPubMedGoogle Scholar
  15. Esser  HJ, Liefting  Y, Ibáñez-Justicia  A, van der Jeugd  H, van Turnhout  CAM, Stroo  A, et al. Spatial risk analysis for the introduction and circulation of six arboviruses in the Netherlands. Parasit Vectors. 2020;13:464. DOIPubMedGoogle Scholar
  16. Schlegel  M, Ali  HS, Stieger  N, Groschup  MH, Wolf  R, Ulrich  RG. Molecular identification of small mammal species using novel cytochrome B gene-derived degenerated primers. Biochem Genet. 2012;50:4407. DOIPubMedGoogle Scholar
  17. Schwaiger  M, Cassinotti  P. Development of a quantitative real-time RT-PCR assay with internal control for the laboratory detection of tick borne encephalitis virus (TBEV) RNA. J Clin Virol. 2003;27:13645. DOIPubMedGoogle Scholar
  18. Kupča  AM, Essbauer  S, Zoeller  G, de Mendonça  PG, Brey  R, Rinder  M, et al. Isolation and molecular characterization of a tick-borne encephalitis virus strain from a new tick-borne encephalitis focus with severe cases in Bavaria, Germany. Ticks Tick Borne Dis. 2010;1:4451. DOIPubMedGoogle Scholar
  19. Kumar  S, Stecher  G, Li  M, Knyaz  C, Tamura  K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol. 2018;35:15479. DOIPubMedGoogle Scholar
  20. Edgar  RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32:17927. DOIPubMedGoogle Scholar
  21. Nei  M, Kumar  S. Molecular evolution and phylogenetics. New York: Oxford University Press; 2000.
  22. Darriba  D, Taboada  GL, Doallo  R, Posada  D. jModelTest 2: more models, new heuristics and parallel computing. Nat Methods. 2012;9:772772. DOIPubMedGoogle Scholar
  23. Roelandt  S, Suin  V, Riocreux  F, Lamoral  S, Van der Heyden  S, Van der Stede  Y, et al. Autochthonous tick-borne encephalitis virus-seropositive cattle in Belgium: a risk-based targeted serological survey. Vector Borne Zoonotic Dis. 2014;14:6407. DOIPubMedGoogle Scholar
  24. de Graaf  JA, Reimerink  JHJ, Voorn  GP, Bij de Vaate  EA, de Vries  A, Rockx  B, et al. First human case of tick-borne encephalitis virus infection acquired in the Netherlands, July 2016. Euro Surveill. 2016;21:30318. DOIPubMedGoogle Scholar
  25. Paulsen  KM, Lamsal  A, Bastakoti  S, Pettersson  JHO, Pedersen  BN, Stiasny  K, et al. High-throughput sequencing of two European strains of tick-borne encephalitis virus (TBEV), Hochosterwitz and 1993/783. Ticks Tick Borne Dis. 2021;12:101557. DOIPubMedGoogle Scholar
  26. Bestehorn  M, Weigold  S, Kern  WV, Chitimia-Dobler  L, Mackenstedt  U, Dobler  G, et al. Phylogenetics of tick-borne encephalitis virus in endemic foci in the upper Rhine region in France and Germany. PLoS One. 2018;13:e0204790. DOIPubMedGoogle Scholar
  27. Fajs  L, Durmiši  E, Knap  N, Strle  F, Avšič-Županc  T. Phylogeographic characterization of tick-borne encephalitis virus from patients, rodents and ticks in Slovenia. PLoS One. 2012;7:e48420. DOIPubMedGoogle Scholar
  28. Ott  D, Ulrich  K, Ginsbach  P, Öhme  R, Bock-Hensley  O, Falk  U, et al. Tick-borne encephalitis virus (TBEV) prevalence in field-collected ticks (Ixodes ricinus) and phylogenetic, structural and virulence analysis in a TBE high-risk endemic area in southwestern Germany. Parasit Vectors. 2020;13:303. DOIPubMedGoogle Scholar
  29. Weidmann  M, Frey  S, Freire  CCM, Essbauer  S, Růžek  D, Klempa  B, et al. Molecular phylogeography of tick-borne encephalitis virus in central Europe. J Gen Virol. 2013;94:212939. DOIPubMedGoogle Scholar
  30. Heinze  DM, Gould  EA, Forrester  NL. Revisiting the clinal concept of evolution and dispersal for the tick-borne flaviviruses by using phylogenetic and biogeographic analyses. J Virol. 2012;86:866371. DOIPubMedGoogle Scholar
  31. Holding  M, Dowall  SD, Medlock  JM, Carter  DP, McGinley  L, Curran-French  M, et al. Detection of new endemic focus of tick-borne encephalitis virus (TBEV), Hampshire/Dorset border, England, September 2019. Euro Surveill. 2019;24:1900658. DOIPubMedGoogle Scholar
  32. Waldenström  J, Lundkvist  A, Falk  KI, Garpmo  U, Bergström  S, Lindegren  G, et al. Migrating birds and tickborne encephalitis virus. Emerg Infect Dis. 2007;13:12158. DOIPubMedGoogle Scholar
  33. Tonteri  E, Kipar  A, Voutilainen  L, Vene  S, Vaheri  A, Vapalahti  O, et al. The three subtypes of tick-borne encephalitis virus induce encephalitis in a natural host, the bank vole (Myodes glareolus). PLoS One. 2013;8:e81214. DOIPubMedGoogle Scholar
  34. Klaus  C, Hoffmann  B, Hering  U, Mielke  B, Sachse  K, Beer  M, et al. Tick-borne encephalitis (TBE) virus prevalence and virus genome characterization in field-collected ticks (Ixodes ricinus) from risk, non-risk and former risk areas of TBE, and in ticks removed from humans in Germany. Clin Microbiol Infect. 2010;16:23844. DOIPubMedGoogle Scholar
  35. Petersen  A, Rosenstierne  MW, Rasmussen  M, Fuursted  K, Nielsen  HV, O’Brien Andersen  L, et al. Field samplings of Ixodes ricinus ticks from a tick-borne encephalitis virus micro-focus in Northern Zealand, Denmark. Ticks Tick Borne Dis. 2019;10:102832. DOIPubMedGoogle Scholar
  36. Bournez  L, Umhang  G, Moinet  M, Boucher  JM, Demerson  JM, Caillot  C, et al. Disappearance of TBEV circulation among rodents in a natural focus in Alsace, eastern France. Pathogens. 2020;9:930. DOIPubMedGoogle Scholar
  37. Frimmel  S, Krienke  A, Riebold  D, Loebermann  M, Littmann  M, Fiedler  K, et al. Tick-borne encephalitis virus habitats in North East Germany: reemergence of TBEV in ticks after 15 years of inactivity. BioMed Res Int. 2014;2014:308371. DOIPubMedGoogle Scholar
  38. Klaus  C, Beer  M, Saier  R, Schau  U, Moog  U, Hoffmann  B, et al. Goats and sheep as sentinels for tick-borne encephalitis (TBE) virus—epidemiological studies in areas endemic and non-endemic for TBE virus in Germany. Ticks Tick Borne Dis. 2012;3:2737. DOIPubMedGoogle Scholar
  39. Imhoff  M, Hagedorn  P, Schulze  Y, Hellenbrand  W, Pfeffer  M, Niedrig  M. Review: Sentinels of tick-borne encephalitis risk. Ticks Tick Borne Dis. 2015;6:592600. DOIPubMedGoogle Scholar
  40. Gerth  HJ, Grimshandl  D, Stage  B, Döller  G, Kunz  C. Roe deer as sentinels for endemicity of tick-borne encephalitis virus. Epidemiol Infect. 1995;115:35565. DOIPubMedGoogle Scholar
  41. Haut  M, Girl  P, Oswald  B, Romig  T, Obiegala  A, Dobler  G, et al. The red fox (Vulpes vulpes) as sentinel for tick-borne encephalitis virus in endemic and non-endemic areas. Microorganisms. 2020;8:1817. DOIPubMedGoogle Scholar
  42. Alfano  N, Tagliapietra  V, Rosso  F, Ziegler  U, Arnoldi  D, Rizzoli  A. Tick-borne encephalitis foci in northeast Italy revealed by combined virus detection in ticks, serosurvey on goats and human cases. Emerg Microbes Infect. 2020;9:47484. DOIPubMedGoogle Scholar
  43. Hofhuis  A, van den Berg  OE, Meerstadt-Rombach  FS, van den Wijngaard  CC, Chung  NH, Franz  E, et al. Exposure to tick-borne encephalitis virus among nature management workers in the Netherlands. Ticks Tick Borne Dis. 2021;12:101762. DOIPubMedGoogle Scholar
  44. Morellet  N, Bonenfant  C, Börger  L, Ossi  F, Cagnacci  F, Heurich  M, et al. Seasonality, weather and climate affect home range size in roe deer across a wide latitudinal gradient within Europe. J Anim Ecol. 2013;82:132639. DOIPubMedGoogle Scholar
  45. Dobler  G, Treib  J, Kiessig  ST, Blohn  WV, Frösner  G, Haass  A. Diagnosis of tick-borne encephalitis: evaluation of sera with borderline titers with the TBE-ELISA. Infection. 1996;24:4056. DOIPubMedGoogle Scholar
  46. Achazi  K, Růžek  D, Donoso-Mantke  O, Schlegel  M, Ali  HS, Wenk  M, et al. Rodents as sentinels for the prevalence of tick-borne encephalitis virus. Vector Borne Zoonotic Dis. 2011;11:6417. DOIPubMedGoogle Scholar
  47. Tonteri  E, Jääskeläinen  AE, Tikkakoski  T, Voutilainen  L, Niemimaa  J, Henttonen  H, et al. Tick-borne encephalitis virus in wild rodents in winter, Finland, 2008-2009. Emerg Infect Dis. 2011;17:725. DOIPubMedGoogle Scholar
  48. Korn  H. Changes in home range size during growth and maturation of the wood mouse (Apodemus sylvaticus) and the bank vole (Clethrionomys glareolus). Oecologia. 1986;68:6238. DOIPubMedGoogle Scholar
  49. Vukićević-Radić  OD, Matić  R, Kataranovski  DS, Stamenković  SZ. Spatial organization and home range of Apodemus flavicollis and A. agrarius on Mt. Avala, Serbia. Acta Zool Acad Sci Hung. 2006;52:8196.
  50. Cull  B, Vaux  AGC, Ottowell  LJ, Gillingham  EL, Medlock  JM. Tick infestation of small mammals in an English woodland. J Vector Ecol. 2017;42:7483. DOIPubMedGoogle Scholar

Main Article

Page created: September 16, 2022
Page updated: November 21, 2022
Page reviewed: November 21, 2022
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.
file_external