Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 29, Number 10—October 2023
Research

Candida auris Clinical Isolates Associated with Outbreak in Neonatal Unit of Tertiary Academic Hospital, South Africa

Dikeledi Kekana, Serisha D. Naicker, Liliwe Shuping, Sithembiso Velaphi, Firdose L. Nakwa, Jeannette Wadula, Nelesh P. GovenderComments to Author , and for GERMS-SA1
Author affiliations: National Institute for Communicable Diseases, Johannesburg, South Africa (D. Kekana, S.D. Naicker, L. Shuping, N.P. Govender); University of the Witwatersrand, Johannesburg (D. Kekana, S. Velaphi, F.L. Nakwa, J. Wadula, N.P. Govender); Chris Hani Baragwanath Academic Hospital, Johannesburg (S. Velaphi, F.L. Nakwa, J. Wadula); University of Cape Town, Cape Town, South Africa (N.P. Govender); University of Exeter, Exeter, United Kingdom (N.P. Govender)

Main Article

Figure 5

Maximum clade credibility tree of 118 South Africa clade III Candida auris isolates from patients at an academic tertiary hospital in South Africa estimated using BEAST strict clock and coalescent model (24). Red tips represent cases from the neonatal ward, blue bars represent 95% highest probability density black dashed line indicates clade III tMRCA, and red dashed line indicates outbreak strain tMRCA. tMRCA, time to most recent common ancestor.

Figure 5. Maximum clade credibility tree of 118 South Africa clade III Candida auris isolates from patients at an academic tertiary hospital in South Africa estimated using BEAST strict clock and coalescent model (24). Red tips represent cases from the neonatal ward, blue bars represent 95% highest probability density black dashed line indicates clade III tMRCA, and red dashed line indicates outbreak strain tMRCA. tMRCA, time to most recent common ancestor.

Main Article

References
  1. Spivak  ES, Hanson  KE. Candida auris: an emerging fungal pathogen. J Clin Microbiol. 2018;56:e0158817. DOIPubMedGoogle Scholar
  2. Sardi  JCO, Scorzoni  L, Bernardi  T, Fusco-Almeida  AM, Mendes Giannini  MJS. Candida species: current epidemiology, pathogenicity, biofilm formation, natural antifungal products and new therapeutic options. J Med Microbiol. 2013;62:1024. DOIPubMedGoogle Scholar
  3. Satoh  K, Makimura  K, Hasumi  Y, Nishiyama  Y, Uchida  K, Yamaguchi  H. Candida auris sp. nov., a novel ascomycetous yeast isolated from the external ear canal of an inpatient in a Japanese hospital. Microbiol Immunol. 2009;53:414. DOIPubMedGoogle Scholar
  4. Govender  NP, Patel  J, Magobo  RE, Naicker  S, Wadula  J, Whitelaw  A, et al.; TRAC-South Africa group. Emergence of azole-resistant Candida parapsilosis causing bloodstream infection: results from laboratory-based sentinel surveillance in South Africa. J Antimicrob Chemother. 2016;71:19942004. DOIPubMedGoogle Scholar
  5. Lockhart  SR, Etienne  KA, Vallabhaneni  S, Farooqi  J, Chowdhary  A, Govender  NP, et al. Simultaneous emergence of multidrug-resistant Candida auris on 3 continents confirmed by whole-genome sequencing and epidemiological analyses. Clin Infect Dis. 2017;64:13440. DOIPubMedGoogle Scholar
  6. World Health Organization. WHO fungal priority pathogens list to guide research, development and public health action. 2022 Oct 25 [cited 2023 Jan 15]. https://www.who.int/publications/i/item/9789240060241
  7. van Schalkwyk  E, Mpembe  RS, Thomas  J, Shuping  L, Ismail  H, Lowman  W, et al.; GERMS-SA. GERMS-SA. Epidemiologic shift in candidemia driven by Candida auris, South Africa, 2016–2017. Emerg Infect Dis. 2019;25:1698707. DOIPubMedGoogle Scholar
  8. Govender  NP, Avenant  T, Brink  A, Chibabhai  V, Cleghorn  J, du Toit  B, et al. Federation of Infectious Diseases Societies of Southern Africa guideline: Recommendations for the detection, management and prevention of healthcare-associated Candida auris colonisation and disease in South Africa. S Afr J Infect Dis. 2019;34:163. DOIPubMedGoogle Scholar
  9. Naicker  SD, Maphanga  TG, Chow  NA, Allam  M, Kwenda  S, Ismail  A, et al. Clade distribution of Candida auris in South Africa using whole genome sequencing of clinical and environmental isolates. Emerg Microbes Infect. 2021;10:13008. DOIPubMedGoogle Scholar
  10. Mashau  RC, Meiring  ST, Dramowski  A, Magobo  RE, Quan  VC, Perovic  O, et al.; Baby GERMS-SA. Culture-confirmed neonatal bloodstream infections and meningitis in South Africa, 2014-19: a cross-sectional study. Lancet Glob Health. 2022;10:e11708. DOIPubMedGoogle Scholar
  11. Shuping  L, Mpembe  R, Mhlanga  M, Naicker  SD, Maphanga  TG, Tsotetsi  E, et al.; for GERMS-SA. for GERMS-SA. Epidemiology of culture-confirmed candidemia among hospitalized children in South Africa, 2012-2017. Pediatr Infect Dis J. 2021;40:7307. DOIPubMedGoogle Scholar
  12. Welsh  RM, Bentz  ML, Shams  A, Houston  H, Lyons  A, Rose  LJ, et al. Survival, persistence, and isolation of the emerging multidrug-resistant pathogenic yeast Candida auris on a plastic health care surface. J Clin Microbiol. 2017;55:29963005. DOIPubMedGoogle Scholar
  13. Muñoz  JF, Gade  L, Chow  NA, Loparev  VN, Juieng  P, Berkow  EL, et al. Genomic insights into multidrug-resistance, mating and virulence in Candida auris and related emerging species. Nat Commun. 2018;9:5346. DOIPubMedGoogle Scholar
  14. Escandón  P, Chow  NA, Caceres  DH, Gade  L, Berkow  EL, Armstrong  P, et al. Molecular epidemiology of Candida auris in Colombia reveals a highly related, countrywide colonization with regional patterns in amphotericin B resistance. Clin Infect Dis. 2019;68:1521.PubMedGoogle Scholar
  15. Maphanga  TG, Naicker  SD, Kwenda  S, Muñoz  JF, van Schalkwyk  E, Wadula  J, et al.; for GERMS-SA. for GERMS-SA. In vitro antifungal resistance of Candida auris isolates from bloodstream infections, South Africa. Antimicrob Agents Chemother. 2021;65:e0051721. DOIPubMedGoogle Scholar
  16. Chris Hani Baragwanath Academic Hospital [cited 2022 Sep 10]. https://www.chrishanibaragwanathhospital.co.za
  17. Berkow  EL, Lockhart  SR, Ostrosky-Zeichner  L. Antifungal susceptibility testing: current approaches. Clin Microbiol Rev. 2020;33:e0006919. DOIPubMedGoogle Scholar
  18. Clinical and Laboratory Standards Institute (CLSI). Reference method for broth dilution antifungal susceptibility testing of yeasts, 4th edition (M27). Wayne (PA): The Institute; 2017.
  19. Clinical and Laboratory Standards Institute (CLSI). Performance Standards for Antifungal Susceptibility Testing of Yeasts, 2nd edition (M60). Wayne (PA): The Institute; 2020.
  20. Schmieder  R, Edwards  R. Quality control and preprocessing of metagenomic datasets. Bioinformatics. 2011;27:8634. DOIPubMedGoogle Scholar
  21. Li  H, Durbin  R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. 2009;25:175460. DOIPubMedGoogle Scholar
  22. Sahl  JW, Lemmer  D, Travis  J, Schupp  JM, Gillece  JD, Aziz  M, et al. NASP: an accurate, rapid method for the identification of SNPs in WGS datasets that supports flexible input and output formats. Microb Genom. 2016;2:e000074. DOIPubMedGoogle Scholar
  23. Kumar  S, Nei  M, Dudley  J, Tamura  K. MEGA: a biologist-centric software for evolutionary analysis of DNA and protein sequences. Brief Bioinform. 2008;9:299306. DOIPubMedGoogle Scholar
  24. Rambaut  A, Lam  TT, Max Carvalho  L, Pybus  OG. Exploring the temporal structure of heterochronous sequences using TempEst (formerly Path-O-Gen). Virus Evol. 2016;2:vew007. DOIPubMedGoogle Scholar
  25. Drummond  AJ, Rambaut  A. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol. 2007;7:214. DOIPubMedGoogle Scholar
  26. Choudhuri  S. Phylogenetic analysis. In: Bioinformatics for beginners. San Diego: Academic Press; 2014. p. 209–18.
  27. Frías-De-León  MG, Hernández-Castro  R, Vite-Garín  T, Arenas  R, Bonifaz  A, Castañón-Olivares  L, et al. Antifungal resistance in Candida: molecular determinants. Antibiotics (Basel). 2020;9:116. DOIPubMedGoogle Scholar
  28. Healey  KR, Kordalewska  M, Jiménez Ortigosa  C, Singh  A, Berrío  I, Chowdhary  A, et al. Limited ERG11 mutations identified in isolates of Candida auris directly contribute to reduced azole susceptibility. Antimicrob Agents Chemother. 2018;62:e0142718. DOIPubMedGoogle Scholar
  29. Adam  RD, Revathi  G, Okinda  N, Fontaine  M, Shah  J, Kagotho  E, et al. Analysis of Candida auris fungemia at a single facility in Kenya. Int J Infect Dis. 2019;85:1827. DOIPubMedGoogle Scholar
  30. Moema  I, Ismail  H, Van Schalkwyk  E, Shuping  L, Govender  NP. Outbreak of culture-confirmed Candida auris bloodstream infection in the neonatal unit of a public-sector hospital, South Africa, July through September 2017. 2017 [cited 2023 Aug 21]. https://www.tephinet.org/learning/fead/outbreak-culture-confirmed-candida-auris-bloodstream-infection-neonatal-unit-public
  31. van Schalkwyk  E, Iyaloo  S, Naicker  SD, Maphanga  TG, Mpembe  RS, Zulu  TG, et al. Large outbreaks of fungal and bacterial bloodstream infections in a neonatal unit, South Africa, 2012–2016. Emerg Infect Dis. 2018;24:120412. DOIPubMedGoogle Scholar
  32. Michalski  C, Kan  B, Lavoie  PM. Antifungal immunological defenses in newborns. Front Immunol. 2017;8:281. DOIPubMedGoogle Scholar
  33. Chow  NA, Muñoz  JF, Gade  L, Berkow  EL, Li  X, Welsh  RM, et al. Tracing the evolutionary history and global expansion of Candida auris using population genomic analyses. MBio. 2020;11:e0336419. DOIPubMedGoogle Scholar
  34. Turbett  ISE, Becker  DSM, Belford  MTB, Kelly  RTM, Desrosiers  MTL, Oliver  RNE, et al. Evaluation of Candida auris acquisition in US international travellers using a culture-based screening protocol1. J Travel Med. 2022;29:taab186.
  35. Chow  NA, Gade  L, Tsay  SV, Forsberg  K, Greenko  JA, Southwick  KL, et al.; US Candida auris Investigation Team. Multiple introductions and subsequent transmission of multidrug-resistant Candida auris in the USA: a molecular epidemiological survey. Lancet Infect Dis. 2018;18:137784. DOIPubMedGoogle Scholar
  36. Yadav  V, Heitman  J. On fruits and fungi: a risk of antifungal usage in food storage and distribution in driving drug resistance in Candida auris. MBio. 2022;13:e0073922. DOIPubMedGoogle Scholar
  37. Miot  J, Leong  T, Takuva  S, Parrish  A, Dawood  H. Cost-effectiveness analysis of flucytosine as induction therapy in the treatment of cryptococcal meningitis in HIV-infected adults in South Africa. BMC Health Serv Res. 2021;21:305. DOIPubMedGoogle Scholar
  38. Bravo Ruiz  G, Lorenz  A. What do we know about the biology of the emerging fungal pathogen of humans Candida auris? Microbiol Res. 2021;242:126621. DOIPubMedGoogle Scholar

Main Article

1Members of GERMS-SA are listed at the end of this article.

Page created: August 31, 2023
Page updated: September 20, 2023
Page reviewed: September 20, 2023
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.
file_external