Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 29, Number 10—October 2023
Research

Ancestral Origin and Dissemination Dynamics of Reemerging Toxigenic Vibrio cholerae, Haiti

Carla N. Mavian, Massimiliano S. Tagliamonte, Meer T. Alam, S. Nazmus Sakib, Melanie N. Cash, Monika Moir, Juan Perez Jimenez, Alberto Riva, Eric J. Nelson, Emilie T. Cato, Jayakrishnan Ajayakumar, Rigan Louis, Andrew Curtis, V. Madsen Beau De Rochars, Vanessa Rouzier, Jean William Pape, Tulio de Oliveira, J. Glenn Morris1Comments to Author , Marco Salemi1, and Afsar Ali1
Author affiliations: University of Florida, Gainesville, Florida, USA (C.N. Mavian, M.S. Tagliamonte, M.T. Alam, S.N. Sakib, M.N. Cash, J.P. Jimenez, A. Riva, E.J. Nelson, E.T. Cato, R. Louis, V.M. Beau De Rochars, J.G. Morris Jr., M. Salemi, A. Ali); Stellenbosch University, Stellenbosch, South Africa (M. Moir, T. de Oliveira); Case Western Reserve University School of Medicine, Cleveland, Ohio, USA (J. Ajayakumar, A. Curtis); Les Centres GHESKIO, Port-au-Prince, Haiti (V. Rouzier, J.W. Pape); Weill Cornell Medical College, New York, New York, USA (V. Rouzier, J.W. Pape); University of KwaZulu-Natal, Durban, South Africa (T. de Oliveira); Centre for the AIDS Programme of Research in South Africa (CAPRISA), Durban, South Africa (T. de Oliveira); University of Washington, Seattle, Washington, USA (T. de Oliveira)

Main Article

Figure 4

Bayesian phylogeography and dissemination patterns of reemerging toxigenic Vibrio cholerae, Haiti, during the 2022 outbreak. A) Bayesian DensiTree showing superimposed posterior distribution of trees inferred by the phylogeography analysis of V. cholerae full genomes from clinical cases sampled in Haiti during October 3–November 21. Colors indicate branches of samples grouped by location. B) Locations of case clusters delimited by colored circles. Solid- and broken-lined arrows indicate migration patterns among areas, as supported by Bayes factor and inferred from phylogeographic analysis by using a discrete trait asymmetric diffusion model. We considered rates yielding a BF >3 supported diffusion rates (33) and BF >6 decisive support (34), constituting the migration graph. Maps demonstrate major migrations of 5<BF<6 and BF >6. A list of all migrations supported by BF >3 are reported elsewhere (Appendix Table 5). BF, Bayes factor.

Figure 4. Bayesian phylogeography and dissemination patterns of reemerging toxigenic Vibrio cholerae, Haiti, during the 2022 outbreak. A) Bayesian DensiTree showing superimposed posterior distribution of trees inferred by the phylogeography analysis of V. cholerae full genomes from clinical cases sampled in Haiti during October 3–November 21. Colors indicate branches of samples grouped by location. B) Locations of case clusters delimited by colored circles. Solid- and broken-lined arrows indicate migration patterns among areas, as supported by Bayes factor and inferred from phylogeographic analysis by using a discrete trait asymmetric diffusion model. We considered rates yielding a BF >3 supported diffusion rates (33) and BF >6 decisive support (34), constituting the migration graph. Maps demonstrate major migrations of 5<BF<6 and BF >6. A list of all migrations supported by BF >3 are reported elsewhere (Appendix Table 5). BF, Bayes factor.

Main Article

References
  1. World Health Organization. Cholera—global situation. 2022 [cited 2023 Feb 8]. https://www.who.int/emergencies/disease-outbreak-news/item/2022-DON426
  2. Hendriksen  RS, Price  LB, Schupp  JM, Gillece  JD, Kaas  RS, Engelthaler  DM, et al. Population genetics of Vibrio cholerae from Nepal in 2010: evidence on the origin of the Haitian outbreak. MBio. 2011;2:e0015711. DOIPubMedGoogle Scholar
  3. Piarroux  R, Barrais  R, Faucher  B, Haus  R, Piarroux  M, Gaudart  J, et al. Understanding the cholera epidemic, Haiti. Emerg Infect Dis. 2011;17:11618. DOIPubMedGoogle Scholar
  4. Ivers  LC, Walton  DA. The “first” case of cholera in Haiti: lessons for global health. Am J Trop Med Hyg. 2012;86:368. DOIPubMedGoogle Scholar
  5. Blackburn  JK, Diamond  U, Kracalik  IT, Widmer  J, Brown  W, Morrissey  BD, et al. Household-level spatiotemporal patterns of incidence of cholera, Haiti, 2011. Emerg Infect Dis. 2014;20:15169. DOIPubMedGoogle Scholar
  6. Alam  MT, Weppelmann  TA, Longini  I, De Rochars  VM, Morris  JG Jr, Ali  A. Increased isolation frequency of toxigenic Vibrio cholerae O1 from environmental monitoring sites in Haiti. PLoS One. 2015;10:e0124098. DOIPubMedGoogle Scholar
  7. Alam  MT, Weppelmann  TA, Weber  CD, Johnson  JA, Rashid  MH, Birch  CS, et al. Monitoring water sources for environmental reservoirs of toxigenic Vibrio cholerae O1, Haiti. Emerg Infect Dis. 2014;20:35663. DOIPubMedGoogle Scholar
  8. Mavian  C, Paisie  TK, Alam  MT, Browne  C, Beau De Rochars  VM, Nembrini  S, et al. Toxigenic Vibrio cholerae evolution and establishment of reservoirs in aquatic ecosystems. Proc Natl Acad Sci U S A. 2020;117:7897904. DOIPubMedGoogle Scholar
  9. World Health Organization. Cholera—Haiti, 12 October 2022 [cited 2023 Aug 29]. https://www.who.int/emergencies/disease-outbreak-news/item/2022-DON415
  10. DAI. Haiti declared free of cholera [cited 2023 Aug 29]. https://www.dai.com/news/haiti-declared-free-of-cholera
  11. Vega Ocasio  D, Juin  S, Berendes  D, Heitzinger  K, Prentice-Mott  G, Desormeaux  AM, et al.; CDC Haiti Cholera Response Group. Cholera Outbreak - Haiti, September 2022-January 2023. MMWR Morb Mortal Wkly Rep. 2023;72:215. DOIPubMedGoogle Scholar
  12. Ministry of Public Health and Population. Epidemiological situation of cholera, 12 May 2023 [in French] [cited 2023 Aug 29]. https://www.mspp.gouv.ht
  13. Rubin  DHF, Zingl  FG, Leitner  DR, Ternier  R, Compere  V, Marseille  S, et al. Reemergence of Cholera in Haiti. N Engl J Med. 2022;387:23879. DOIPubMedGoogle Scholar
  14. Walters  C, Chen  J, Stroika  S, Katz  LS, Turnsek  M, Compère  V, et al. Genome sequences from a reemergence of Vibrio cholerae in Haiti, 2022 reveal relatedness to previously circulating strains. J Clin Microbiol. 2023;61:e0014223. DOIPubMedGoogle Scholar
  15. Ali  A, Chen  Y, Johnson  JA, Redden  E, Mayette  Y, Rashid  MH, et al. Recent clonal origin of cholera in Haiti. Emerg Infect Dis. 2011;17:699701. DOIPubMedGoogle Scholar
  16. Azarian  T, Ali  A, Johnson  JA, Mohr  D, Prosperi  M, Veras  NM, et al. Phylodynamic analysis of clinical and environmental Vibrio cholerae isolates from Haiti reveals diversification driven by positive selection. MBio. 2014;5:e0182414. DOIPubMedGoogle Scholar
  17. Alam  MT, Ray  SS, Chun  CN, Chowdhury  ZG, Rashid  MH, Madsen Beau De Rochars  VE, et al. Major shift of toxigenic V. cholerae O1 from Ogawa to Inaba serotype isolated from clinical and environmental samples in Haiti. PLoS Negl Trop Dis. 2016;10:e0005045. DOIPubMedGoogle Scholar
  18. Paisie  TK, Cash  MN, Tagliamonte  MS, Ali  A, Morris  JG Jr, Salemi  M, et al. Molecular basis of the toxigenic Vibrio cholerae O1 serotype switch from Ogawa to Inaba in Haiti. Microbiol Spectr. 2023;11:e0362422. DOIPubMedGoogle Scholar
  19. Weill  FX, Domman  D, Njamkepo  E, Tarr  C, Rauzier  J, Fawal  N, et al. Genomic history of the seventh pandemic of cholera in Africa. Science. 2017;358:7859. DOIPubMedGoogle Scholar
  20. Domman  D, Quilici  ML, Dorman  MJ, Njamkepo  E, Mutreja  A, Mather  AE, et al. Integrated view of Vibrio cholerae in the Americas. Science. 2017;358:78993. DOIPubMedGoogle Scholar
  21. Colwell  RR, Huq  A. Environmental reservoir of Vibrio cholerae. The causative agent of cholera. Ann N Y Acad Sci. 1994;740(1 Disease in Ev):44–54.
  22. Morris  JG Jr. Cholera—modern pandemic disease of ancient lineage. Emerg Infect Dis. 2011;17:2099104. DOIPubMedGoogle Scholar
  23. Azarian  T, Ali  A, Johnson  JA, Jubair  M, Cella  E, Ciccozzi  M, et al. Non-toxigenic environmental Vibrio cholerae O1 strain from Haiti provides evidence of pre-pandemic cholera in Hispaniola. Sci Rep. 2016;6:36115. DOIPubMedGoogle Scholar
  24. Chen  S, Zhou  Y, Chen  Y, Gu  J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics. 2018;34:i88490. DOIPubMedGoogle Scholar
  25. Croucher  NJ, Page  AJ, Connor  TR, Delaney  AJ, Keane  JA, Bentley  SD, et al. Rapid phylogenetic analysis of large samples of recombinant bacterial whole genome sequences using Gubbins. Nucleic Acids Res. 2015;43:e15. DOIPubMedGoogle Scholar
  26. Tonkin-Hill  G, Lees  JA, Bentley  SD, Frost  SDW, Corander  J. Fast hierarchical Bayesian analysis of population structure. Nucleic Acids Res. 2019;47:553949. DOIPubMedGoogle Scholar
  27. Nguyen  LT, Schmidt  HA, von Haeseler  A, Minh  BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol. 2015;32:26874. DOIPubMedGoogle Scholar
  28. Alam  MT, Mavian  C, Paisie  TK, Tagliamonte  MS, Cash  MN, Angermeyer  A, et al. Emergence and evolutionary response of Vibrio cholerae to novel bacteriophage, Democratic Republic of the Congo. Emerg Infect Dis. 2022;28:248290. DOIPubMedGoogle Scholar
  29. Weill  F-X, Domman  D, Njamkepo  E, Almesbahi  AA, Naji  M, Nasher  SS, et al. Genomic insights into the 2016-2017 cholera epidemic in Yemen. Nature. 2019;565:2303. DOIPubMedGoogle Scholar
  30. Sagulenko  P, Puller  V, Neher  RA. TreeTime: Maximum-likelihood phylodynamic analysis. Virus Evol. 2018;4:vex042. DOIPubMedGoogle Scholar
  31. Drummond  AJ, Rambaut  A. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol. 2007;7:214. DOIPubMedGoogle Scholar
  32. Yu  GC, Smith  DK, Zhu  HC, Guan  Y, Lam  TTY. GGTREE: an R package for visualization and annotation of phylogenetic trees with their covariates and other associated data. Methods Ecol Evol. 2017;8:2836. DOIGoogle Scholar
  33. Drummond  AJ, Suchard  MA, Xie  D, Rambaut  A. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol Biol Evol. 2012;29:196973. DOIPubMedGoogle Scholar
  34. Lemey  P, Rambaut  A, Drummond  AJ, Suchard  MA. Bayesian phylogeography finds its roots. PLOS Comput Biol. 2009;5:e1000520. DOIPubMedGoogle Scholar
  35. Xie  W, Lewis  PO, Fan  Y, Kuo  L, Chen  MH. Improving marginal likelihood estimation for Bayesian phylogenetic model selection. Syst Biol. 2011;60:15060. DOIPubMedGoogle Scholar
  36. Sjölund-Karlsson  M, Reimer  A, Folster  JP, Walker  M, Dahourou  GA, Batra  DG, et al. Drug-resistance mechanisms in Vibrio cholerae O1 outbreak strain, Haiti, 2010. Emerg Infect Dis. 2011;17:21514. DOIPubMedGoogle Scholar
  37. Kim  HB, Wang  M, Ahmed  S, Park  CH, LaRocque  RC, Faruque  AS, et al. Transferable quinolone resistance in Vibrio cholerae. Antimicrob Agents Chemother. 2010;54:799803. DOIPubMedGoogle Scholar
  38. Jubair  M, Morris  JG Jr, Ali  A. Survival of Vibrio cholerae in nutrient-poor environments is associated with a novel “persister” phenotype. PLoS One. 2012;7:e45187. DOIPubMedGoogle Scholar
  39. Haiti Libre. Haiti—FLASH: first effect of Hurricane Fiona on Haiti [cited 2023 Aug 29]. https://www.haitilibre.com/en/news-37687-haiti-flash-first-effect-of-hurricane-fiona-on-haiti.html
  40. United Nations. ‘Violent civil unrest’ in Haiti hampers aid delivery, 16 Sep 2022 [cited 2023 Aug 29]. https://news.un.org/en/story/2022/09/1126861
  41. The Guardian. They have no fear and no mercy: gang rule engulfs Haitian capital, 18 Sep 2022 [cited 2023 Aug 29]. https://www.theguardian.com/world/2022/sep/18/haiti-violence-gang-rule-port-au-prince
  42. Ali  M, Emch  M, Park  JK, Yunus  M, Clemens  J. Natural cholera infection-derived immunity in an endemic setting. J Infect Dis. 2011;204:9128. DOIPubMedGoogle Scholar
  43. Kirpich  A, Weppelmann  TA, Yang  Y, Ali  A, Morris  JG Jr, Longini  IM. Cholera transmission in Ouest Department of Haiti: dynamic modeling and the future of the epidemic. PLoS Negl Trop Dis. 2015;9:e0004153. DOIPubMedGoogle Scholar
  44. Kirpich  A, Weppelmann  TA, Yang  Y, Morris  JG Jr, Longini  IM Jr. Controlling cholera in the Ouest Department of Haiti using oral vaccines. PLoS Negl Trop Dis. 2017;11:e0005482. DOIPubMedGoogle Scholar
  45. Sévère  K, Rouzier  V, Anglade  SB, Bertil  C, Joseph  P, Deroncelay  A, et al. Effectiveness of oral cholera vaccine in Haiti: 37-month follow-up. Am J Trop Med Hyg. 2016;94:113642. DOIPubMedGoogle Scholar
  46. Pape  JW, Rouzier  V. Embracing oral cholera vaccine—shifting response to cholera. N Engl J Med. 2014;370:20679. DOIPubMedGoogle Scholar
  47. Ratnayake  R, Finger  F, Azman  AS, Lantagne  D, Funk  S, Edmunds  WJ, et al. Highly targeted spatiotemporal interventions against cholera epidemics, 2000-19: a scoping review. Lancet Infect Dis. 2021;21:e3748. DOIPubMedGoogle Scholar

Main Article

1These senior authors contributed equally to this article.

Page created: August 05, 2023
Page updated: September 20, 2023
Page reviewed: September 20, 2023
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.
file_external