Volume 29, Number 8—August 2023
Research Letter
Six Extensively Drug-Resistant Bacteria in an Injured Soldier, Ukraine
Table
MRSN ID | Species | ST† | Antimicrobial resistance genes‡ |
---|---|---|---|
110819 | Acinetobacter baumannii | 78 | aph(3′)-Via, aac(6')-Ian, armA, aadA5, ant(3′′)-IIa, blaOXA-23, blaOXA-72, blaOXA-90, blaADC-152, blaCTX-M-115, blaCARB-16, catA1, mph(E), msr(E), sul1, sul2 |
110818 | Pseudomonas aeruginosa | 357 | aac(6')-Il, aph(3′)-IIb, aadA1, blaOXA-10, blaOXA-846, blaPDC-11, blaVEB-9, catB7, sul1, tet(A), dfrB2 |
110817 | P. aeruginosa | 773 | aph(3′)-IIb, aadA11, blaNDM-1, blaPDC-16, blaOXA-395, catB7, qnrVC1, rmtB4, sul1, tet(G) |
110606§ | P. aeruginosa | 1047 | aac(6')-Ib3, aph(3′)-IIb, aph(3′′)-Ib, aph(6)-Id, blaIMP-1, blaOXA-10, blaOXA-488, blaPDC-12, catB7, sul1 |
110821 | Klebsiella pneumoniae | 395 | aac(6')-Ib-cr5, aph(3′)-VI, ant(2′′)-Ia, aadA1, armA, blaNDM-1, blaOXA-48, blaCTX-M-15, blaOXA-1, blaSHV-11, blaTEM-1, catA1, dfrA1, dfrA5, fosA, mph(A), mph(E), msr(E), oqxA, oqxB, qnrS1, sul1, sul2, tet(A) |
110820 | Enterococcus faecium | 117 | aac(6')-Ie, aacA-ENT1, aph(2′′)-Ia, catA7, dfrG, erm(B), msr(C), vanA (operon) |
*Bold indicates high-impact genes. MRSN, The Multidrug-Resistant Organism Repository and Surveillance Network; ID, identification; ST, sequence type.
†In silico–derived multilocus STs.
‡In silico–derived antimicrobial resistance gene content generated using MIGHT, a customized script wrapping ARIBA (https://github.com/sanger-pathogens/ariba) and AMRfinder (https://github.com/ncbi/amr).
§Blood culture isolate.
References
- Kazmirchuk A, Yarmoliuk Y, Lurin I, Gybalo R, Burianov O, Derkach S, et al. Ukraine’s experience with management of combat casualties using NATO’s four-tier “Changing as Needed” healthcare system. World J Surg. 2022;46:2858–62. DOIPubMedGoogle Scholar
- Kondratiuk V, Jones BT, Kovalchuk V, Kovalenko I, Ganiuk V, Kondratiuk O, et al. Phenotypic and genotypic characterization of antibiotic resistance in military hospital-associated bacteria from war injuries in the Eastern Ukraine conflict between 2014 and 2020. J Hosp Infect. 2021;112:69–76. DOIPubMedGoogle Scholar
- Higgins PG, Hagen RM, Podbielski A, Frickmann H, Warnke P. Molecular epidemiology of carbapenem-resistant Acinetobacter baumannii isolated from war-injured patients from the eastern Ukraine. Antibiotics (Basel). 2020;9:579. DOIPubMedGoogle Scholar
- Wand ME, Bock LJ, Bonney LC, Sutton JM. Mechanisms of increased resistance to chlorhexidine and cross-resistance to colistin following exposure of Klebsiella pneumoniae clinical isolates to chlorhexidine. Antimicrob Agents Chemother. 2016;61:e01162–16.PubMedGoogle Scholar
- Simner PJ, Beisken S, Bergman Y, Ante M, Posch AE, Tamma PD. Defining baseline mechanisms of cefiderocol resistance in the Enterobacterales. Microb Drug Resist. 2022;28:161–70. DOIPubMedGoogle Scholar
- Shaidullina ER, Schwabe M, Rohde T, Shapovalova VV, Dyachkova MS, Matsvay AD, et al. Genomic analysis of the international high-risk clonal lineage Klebsiella pneumoniae sequence type 395. Genome Med. 2023;15:9. DOIPubMedGoogle Scholar
- Sandfort M, Hans JB, Fischer MA, Reichert F, Cremanns M, Eisfeld J, et al. Increase in NDM-1 and NDM-1/OXA-48-producing Klebsiella pneumoniae in Germany associated with the war in Ukraine, 2022. Euro Surveill. 2022;27:
2200926 . DOIPubMedGoogle Scholar - Giannouli M, Cuccurullo S, Crivaro V, Di Popolo A, Bernardo M, Tomasone F, et al. Molecular epidemiology of multidrug-resistant Acinetobacter baumannii in a tertiary care hospital in Naples, Italy, shows the emergence of a novel epidemic clone. J Clin Microbiol. 2010;48:1223–30. DOIPubMedGoogle Scholar
- Del Barrio-Tofiño E, López-Causapé C, Oliver A. Pseudomonas aeruginosa epidemic high-risk clones and their association with horizontally-acquired β-lactamases: 2020 update. Int J Antimicrob Agents. 2020;56:
106196 . DOIPubMedGoogle Scholar - Zwittink RD, Wielders CC, Notermans DW, Verkaik NJ, Schoffelen AF, Witteveen S, et al.; Dutch CPE and MRSA Surveillance Study Groups. Multidrug-resistant organisms in patients from Ukraine in the Netherlands, March to August 2022. Euro Surveill. 2022;27:
2200896 . DOIPubMedGoogle Scholar
Page created: June 29, 2023
Page updated: July 20, 2023
Page reviewed: July 20, 2023
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.