Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 29, Number 9—September 2023
Dispatch

Anaplasma bovis–Like Infections in Humans, United States, 2015–2017

Sandor E. KarpathyComments to Author , Luke Kingry, Bobbi S. Pritt, Jonathan C. Berry, Neil B. Chilton, Shaun J. Dergousoff1, Roberto Cortinas, Sarah W. Sheldon, Stephanie Oatman2, Melissa Anacker, Jeannine Petersen, and Christopher D. Paddock
Author affiliations: Centers for Disease Control and Prevention, Atlanta, Georgia, USA (S.E. Karpathy, C.D. Paddock); Centers for Disease Control and Prevention, Fort Collins, Colorado, USA (L. Kingry, S.W. Sheldon, S. Oatman, J. Petersen); Mayo Clinic, Rochester, Minnesota, USA (B.S. Pritt, J.C. Berry); University of Saskatchewan, Saskatoon, Saskatchewan, Canada (N.B. Chilton, S.J. Dergousoff); University of Nebraska, Lincoln, Nebraska, USA (R. Cortinas); Minnesota Department of Health, St. Paul, Minnesota, USA (M. Anacker)

Main Article

Figure

Phylogenetic relationship of novel human Anaplasma bovis–like pathogen associated with human cases in the United States, 2015–2017, to other A. bovis–like and related Anaplasma species based on 2,039 bp of concatenated rrs, gltA, groEL nucleotide sequences. Phylogenetic relationships were inferred using the RAxML method using the general time reversible plus gamma model (13). One thousand bootstrap replicates were used to estimate the likelihood of the tree; bootstrap values are displayed next to the nodes. Only bootstrap values of >50 are shown. GenBank accession numbers for the samples in this study: OQ772254;, gltA; OQ772255, groEL; and OQ724830, rrs; those for the D. andersoni sample were assigned the following numbers: OQ772256, gltA; OQ772257, groEL; and OQ724821, rrs. Reference sequences from GenBank: Anaplasma bovis (cow, China): MH255937, 16S; MH594290, gltA; MH255906.1, groEL; A. bovis (goat, China): MH255939, 16S; MH255915.1, gltA; MH255907, groEL; A. bovis (raccoon, Japan): GU937020, 16S; JN588561, gltA; JN588562, groEL; Anaplasma platys strain Okinawa: AY077619, 16S; AY077620, gltA; AY077621, groEL; A. phagocytophilum strain HZ NC_007797; A. centrale strain Israel NC_013532; A. marginale strain Florida NC_012026. Ehrlichia chaffeensis strain West Paces (NZ_CP007480) was used as the outgroup. Scale bar represents mean number of nucleotide substitutions per site.

Figure. Phylogenetic relationship of novel human Anaplasma bovis–like pathogen associated with human cases in the United States, 2015–2017, to other A. bovis–like and related Anaplasma species based on 2,039 bp of concatenated rrs, gltA, groEL nucleotide sequences. Phylogenetic relationships were inferred using the RAxML method using the general time reversible plus gamma model (13). One thousand bootstrap replicates were used to estimate the likelihood of the tree; bootstrap values are displayed next to the nodes. Only bootstrap values of >50 are shown. GenBank accession numbers for the samples in this study: OQ772254;, gltA; OQ772255, groEL; and OQ724830, rrs; those for the D. andersoni sample were assigned the following numbers: OQ772256, gltA; OQ772257, groEL; and OQ724821, rrs. Reference sequences from GenBank: Anaplasma bovis (cow, China): MH255937, 16S; MH594290, gltA; MH255906.1, groEL; A. bovis (goat, China): MH255939, 16S; MH255915.1, gltA; MH255907, groEL; A. bovis (raccoon, Japan): GU937020, 16S; JN588561, gltA; JN588562, groEL; Anaplasma platys strain Okinawa: AY077619, 16S; AY077620, gltA; AY077621, groEL; A. phagocytophilum strain HZ NC_007797; A. centrale strain Israel NC_013532; A. marginale strain Florida NC_012026. Ehrlichia chaffeensis strain West Paces (NZ_CP007480) was used as the outgroup. Scale bar represents mean number of nucleotide substitutions per site.

Main Article

References
  1. Li  H, Zheng  Y-C, Ma  L, Jia  N, Jiang  B-G, Jiang  R-R, et al. Human infection with a novel tick-borne Anaplasma species in China: a surveillance study. Lancet Infect Dis. 2015;15:66370. DOIPubMedGoogle Scholar
  2. Donatien  A, Lestoquard  F. Rickettsiose bovine Algerienne a R. bovis. Bull Soc Pathol Exot. 1940;33:2458.
  3. Lu  M, Chen  Q, Qin  X, Lyu  Y, Teng  Z, Li  K, et al. Anaplasma bovis infection in fever and thrombocytopenia patients—Anhui Province, China 2021. China CDC Wkly. 2022;4:24953. DOIPubMedGoogle Scholar
  4. Kingry  L, Sheldon  S, Oatman  S, Pritt  B, Anacker  M, Bjork  J, et al. Targeted metagenomics for clinical detection and discovery of bacterial tick-borne pathogens. J Clin Microbiol. 2020;58:e0014720. DOIPubMedGoogle Scholar
  5. Chilton  NB, Dergousoff  SJ, Lysyk  TJ. Prevalence of Anaplasma bovis in Canadian populations of the Rocky Mountain wood tick, Dermacentor andersoni. Ticks Tick Borne Dis. 2018;9:152831. DOIPubMedGoogle Scholar
  6. Lado  P, Luan  B, Allerdice  MEJ, Paddock  CD, Karpathy  SE, Klompen  H. Integrating population genetic structure, microbiome, and pathogens presence data in Dermacentor variabilis. PeerJ. 2020;8:e9367. DOIPubMedGoogle Scholar
  7. Lane  RS, Mun  J, Peribáñez  MA, Fedorova  N. Differences in prevalence of Borrelia burgdorferi and Anaplasma spp. infection among host-seeking Dermacentor occidentalis, Ixodes pacificus, and Ornithodoros coriaceus ticks in northwestern California. Ticks Tick Borne Dis. 2010;1:15967. DOIPubMedGoogle Scholar
  8. Zhuang  L, Du  J, Cui  XM, Li  H, Tang  F, Zhang  PH, et al. Identification of tick-borne pathogen diversity by metagenomic analysis in Haemaphysalis longicornis from Xinyang, China. Infect Dis Poverty. 2018;7:45. DOIPubMedGoogle Scholar
  9. Sumner  JW, Nicholson  WL, Massung  RF. PCR amplification and comparison of nucleotide sequences from the groESL heat shock operon of Ehrlichia species. J Clin Microbiol. 1997;35:208792. DOIPubMedGoogle Scholar
  10. Rar  VA, Livanova  NN, Panov  VV, Doroschenko  EK, Pukhovskaya  NM, Vysochina  NP, et al. Genetic diversity of Anaplasma and Ehrlichia in the Asian part of Russia. Ticks Tick Borne Dis. 2010;1:5765. DOIPubMedGoogle Scholar
  11. Rar  V, Livanova  N, Tkachev  S, Kaverina  G, Tikunov  A, Sabitova  Y, et al. Detection and genetic characterization of a wide range of infectious agents in Ixodes pavlovskyi ticks in Western Siberia, Russia. Parasit Vectors. 2017;10:258. DOIPubMedGoogle Scholar
  12. Stamatakis  A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30:13123. DOIPubMedGoogle Scholar
  13. Sashika  M, Abe  G, Matsumoto  K, Inokuma  H. Molecular survey of Anaplasma and Ehrlichia infections of feral raccoons (Procyon lotor) in Hokkaido, Japan. Vector Borne Zoonotic Dis. 2011;11:34954. DOIPubMedGoogle Scholar
  14. Goethert  HK, Telford  SR III. Enzootic transmission of Anaplasma bovis in Nantucket cottontail rabbits. J Clin Microbiol. 2003;41:37447. DOIPubMedGoogle Scholar
  15. Yabsley  MJ, Romines  J, Nettles  VF. Detection of Babesia and Anaplasma species in rabbits from Texas and Georgia, USA. Vector Borne Zoonotic Dis. 2006;6:713. DOIPubMedGoogle Scholar

Main Article

1Current affiliation: Agriculture and Agri-food Canada, Lethbridge, Alberta, Canada.

2Current affiliation: Mayo Clinic, Jacksonville, Florida, USA.

Page created: July 11, 2023
Page updated: August 20, 2023
Page reviewed: August 20, 2023
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.
file_external