Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 3, Number 2—June 1997

Polycystic Kidney Disease: An Unrecognized Emerging Infectious Disease?

Marcia A. Miller-Hjelle*, J. Thomas Hjelle*, Monica Jones*, William R. Mayberry†, Mary Ann Dombrink-Kurtzman‡, Stephen W. Peterson‡, Deborah M. Nowak*, and Frank S. Darras*
Author affiliations: *University of Illinois College of Medicine at Peoria, Peoria, Illinois, USA; †East Tennessee State University, Johnson City, Tennessee, USA; ‡U.S. Department of Agriculture, Agricultural Research Service, Peoria, Illinois, USA

Main Article

Figure 1

Cascade of biochemical interactions and reactions leading to gel clot formation in the Limulus amebocyte lysate assay. Endotoxin binding to Factor C via the Lipid A moiety results in its activation and in turn the sequential activation of Factor B, which results in the subsequent activation of the proclotting enzyme. Binding of polymyxin B to endotoxin blocks Limulus reactivity in those samples where endotoxin is the initiating molecule. In contrast, (1<!-- INSERT SHAPE PICT -->3)-ß-D-glucans bi

Figure 1. Cascade of biochemical interactions and reactions leading to gel clot formation in the Limulus amebocyte lysate assay. Endotoxin binding to Factor C via the Lipid A moiety results in its activation and in turn the sequential activation of Factor B, which results in the subsequent activation of the proclotting enzyme. Binding of polymyxin B to endotoxin blocks Limulus reactivity in those samples where endotoxin is the initiating molecule. In contrast, (13)-ß-D-glucans bind to a different component, Factor G, in the Limulus assay reagent, thereby leading to its activation and subsequent cascade of reactions to gel formation. The addition of laminarin, an inhibitor of glucan binding to Factor G, to Limulus assay reagent blocks reactivity of samples containing glucan (21).

Main Article

  1. Fredricks  D, Relman  D. Sequence-based identification of microbial pathogens: a reconsideration of Koch's postulates. Clin Microbiol Rev. 1996;9:1833.PubMedGoogle Scholar
  2. Martinez  RR, Grantham  JJ. Polycystic kidney disease: Etiology, pathogenesis, and treatment. Dis Mon. 1995;41:698765. DOIGoogle Scholar
  3. Grantham  JJ. The etiology, pathogenesis, and treatment of autosomal dominant polycystic kidney disease: recent advances. Am J Kidney Dis. 1996;28:788803. DOIPubMedGoogle Scholar
  4. Carone  FA, Bacallao  R, Kanwar  YS. The pathogenesis of polycystic kidney disease. Histol Histopathol. 1995;10:21321.PubMedGoogle Scholar
  5. Brasier  JL, Henske  EP. Loss of the polycystic kidney disease (PKD1) region of chromosome 16p13 in renal cyst cells supports a loss-of-function model for cyst pathogenesis. J Clin Invest. In press.
  6. Mochizuki  T, Wu  G, Hayashi  T, Xenophontos  SL, Veldhuisen  B, Saris  JJ, PKD2, a gene for polycystic kidney disease that encodes an integral membrane protein. Science. 1996;272:133942. DOIPubMedGoogle Scholar
  7. Schwab  S, Bander  S, Saulo  K. Renal infection autosomal dominant polycystic kidney disease. Am J Med. 1987;82:7148. DOIPubMedGoogle Scholar
  8. Sklar  A, Caruana  RJ, Lammers  JE, Strauser  GD. Renal infection in autosomal dominant polycystic kidney disease. Am J Kidney Dis. 1987;10:818.
  9. Werder  AA, Amos  A, Nielsen  AH, Wolfe  GH. Comparative effects of germfree and ambient environments on the development of cystic kidney disease in CFWwd mice. J Lab Clin Med. 1984;103:399407. PubMedGoogle Scholar
  10. Gardner  KD Jr, Evan  AP, Reed  WP. Accelerated renal cyst development in deconditioned germfree rats. Kidney Int. 1986;29:111623. DOIPubMedGoogle Scholar
  11. Gardner  KD Jr, Reed  WP, Evan  AP, Zedalis  J, Hylarides  MD, Leon  AA. Endotoxin provocation of experimental renal cystic disease. Kidney Int. 1987;32:32934. DOIPubMedGoogle Scholar
  12. Munford  R, Hall  C, Lipton  J. Biologic activity, lipoprotein-binding behavior and in vivo disposition of extracted and native forms of Salmonella typhimurium. Clin Investig. 1982;70:87788. DOIGoogle Scholar
  13. Rietschel  ET, Kirikae  T, Schade  FU, Mamat  U, Schmidt  G, Loppnow  H, Bacterial endotoxin: molecular relationships of structure to activity and function. FASEB J. 1994;8:21725. PubMedGoogle Scholar
  14. Wilkinson  SG. Gram-negative bacteria. In: Rutledge G, Wilkinson SG, editors, Microbial Lipids, Vol. 1. New York: Academic Press, 1988:431-57.
  15. Miller  MA, Prior  RB, Horvath  FJ, Hjelle  JT. Detection of Endotoxiuria in polycystic kidney disease patients by the use of the Limulus Amoebocyte lysate assay. Am J Kidney Dis. 1990;15:11722. PubMedGoogle Scholar
  16. Gardner  KD Jr, Burnside  J, Elzinga  L. Cytokines in fluids from polycystic kidneys. Kidney Int. 1991;39:71824. DOIPubMedGoogle Scholar
  17. Nolan  JP. Intestinal endotoxins as mediators of hepatic injury--an idea whose time has come again. Hepatology. 1989;10:88791. DOIPubMedGoogle Scholar
  18. Deitch  E, Berg  R, Specian  R. Endotoxin promotes the translocation of bacteria from the gut. Arch Surg. 1987;122:18590. PubMedGoogle Scholar
  19. Mimura  Y, Yamanaka  K, Kawabata  R, Inoue  A, Sasatomi  K, Koga  H, Lipopolysaccharide in rheumatoid arthritis. J Endotoxin Res. 1996;3:17.
  20. Muhlestein  JB, Hammond  EH, Carlquist  JF, Radicke  E, Thomson  MJ, Karagounis  LA, Increased incidence of Chlamydia species within the coronary arteries of patients with symptomatic atherosclerotic versus other forms of cardiovascular disease. J Am Coll Cardiol. 1996;27:155561. DOIPubMedGoogle Scholar
  21. Raetz  CRH, Ulevitch  RJ, Wright  SD, Sibley  CH, Ding  A, Nathan  CF. Gram negative endotoxin: an extraordinary lipid with profound effects on eukaryotic signal transduction. FASEB J. 1991;5:265260. PubMedGoogle Scholar
  22. Prior  RB. The Limulus amoebocyte lysate test. In: Prior RB, editor. Clinical applications of the Limulus amoebocyte lysate test. Boca Raton (FL): CRC Press; 1990;27-36.
  23. Zhang  GH, Baei  L, Buchardt  O, Koch  C. Differential blocking of coagulation-activation pathways of Limulus amoebocyte lysate. J Clin Microbiol. 1994;32:153741. PubMedGoogle Scholar
  24. Obayashi  T, Tamura  H, Tanaka  S, Ohki  M, Takahashi  S, Kawai  T. Endotoxin-inactivating activity in normal and pathological human blood samples. Infect Immun. 1986;53:2947. PubMedGoogle Scholar
  25. Morrison  DC, Jacobs  DM. Binding of polymyxin B to the lipid A portion of bacterial lipopolysaccharides. Immunochem. 1979;13:8138. DOIGoogle Scholar
  26. Miyazaki  T, Hohno  S, Mitsutake  K, Maesaki  S, Tanaka  K, Hara  K. (1-3)-ß-D-glucan in culture fluid of fungi activates Factor G, a Limulus coagulation factor. J Clin Lab Anal. 1995;9:3349. DOIPubMedGoogle Scholar
  27. Levi  ME, Eshaghi  N, Smith  JW, Elkind  C. Fever of unknown origin following an upper gastrointestinal series in a patient with polycystic kidney disease. S Med J. 1995;88:76970.
  28. Lowry  O, Rosebrough  N, Farr  A, Randall  R. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951;193:26575.PubMedGoogle Scholar
  29. Douwes  J, Doekes  G, Montijn  R, Heedrik  D, Brunekreef  B. Measurement of ß (1-3)-glucan in occupational and home environments with an inhibition enzyme immunoassay. Appl Environ Microbiol. 1996;62:317682. PubMedGoogle Scholar
  30. Miyazaki  T, Kohno  S, Mitsutake  K, Yamada  H, Yasuoka  T, Malsaki  S, . Combination of conventional and endotoxin-specific Limulus tests for measurement of polysaccharides in sera of rabbits with experimental systemic Candadiasis. Tohoku J Exp Med. 1992;168:19 DOIPubMedGoogle Scholar
  31. Sturk  A, VanDeventer  S, Wortel  C. Detection and clinical relevance of human endotoxemia. Z Med Lab Diagn. 1990;31:14758.PubMedGoogle Scholar
  32. Mayberry  WR, Lane  JR. Sequential alkaline saponification/acid hydrolysis/esterification: a one-tube method with enhanced recovery of both cyclopropane and hydroxylated fatty acids. J Microbiol Methods. 1993;18:2132. DOIGoogle Scholar
  33. Yoshida  M, Roth  RI, Grunfeld  C, Feingold  KR, Levin  J. Soluble (1-3)-ß-D-glucan purified from Candida albicans: biologic effects and distribution in blood and organs in rabbits. J Lab Clin Med. 1996;128:10314. DOIPubMedGoogle Scholar
  34. Ikemura  K, Ikegama  K, Shimazu  T, Yoshioka  T, Sugimoto  T. False positive results in Limulus test caused by Limulus amoebocyte lysate-reactive material in immunoglobulin products. J Clin Microbiol. 1989;27:19658. PubMedGoogle Scholar
  35. Williams  D. (1-3)-ß-D-Glucan. In: Rylander R, Jacobs R, editors. Organic dusts: exposure, effects, and prevention. Boca Raton (FL): Lewis Publishers, 1994;83-5.
  36. Kaufman  L, Reiss  E. Serodiagnosis of fungal diseases. In: Rose N, deMacario E, Fahey J, Friedman H, Penn G, editors. Manual of clinical laboratory immunology. Washington (DC): American Society for Microbiology, 1992:506-28.
  37. Innis  M, Gelfand  D. Optimization of PCRs. In: Innis M, Gelfand D, Sninsky J, White T, editors. PCR protocols-a guide to methods and applications. New York: Academic Press 1990:3-12.
  38. Latge  J-P, Kobayashi  H, Debeaupuis  J-P, Diaquin  M, Sarfati  J, Wieruszeski  JM, Chemical and immunological characterization of the extracellular galactomannan of Aspergillus fumigatus. Infect Immun. 1994;62:542433. PubMedGoogle Scholar
  39. Notermans  S, Dufrenne  J, Wijnands  L, Engel  H. Human serum antibodies to extracellular polysac-charide (EPS) of moulds. J Med Vet Mycol. 1988;26:418. DOIPubMedGoogle Scholar
  40. Garner  R, Hudson  J. Intravenous injection of Candida-derived mannan results in elevated TNFa levels in serum. Infect Immun. 1996:45616. PubMedGoogle Scholar
  41. Roby  R, Sneller  M. Ann Allergy Asthma Immunol. 1979;43:2868.Incidence of fungal spores at the homes of allergic patients in an agricultural community. II. Correlations of skin test with mold frequency
  42. De Nus  M, Rombouts  F, Notermans  S. Fusarium molds and their mycotoxins. J Food Saf. 1996;16:1558. DOIGoogle Scholar
  43. Badria  FA, Li  S, Shier  WT. Fumonisins as potential causes of kidney disease. J Toxicol Toxin Rev. 1996;15:27392.
  44. Scheff  R, Zuckerman  G, Harter  H, Delmez  J, Koehler  R. Diverticular disease in individuals with chronic renal failure due to polycystic kidney disease. Ann Intern Med. 1980;92:2024. PubMedGoogle Scholar
  45. Gans  H, Matsumoto  K. The escape of endotoxin from the intestine. Surgery, Gynecology and Obstetrics 1974;139:395-402.
  46. Grantham  JJ. Acquired cystic kidney disease. Kidney Int. 1991;40:14352. DOIPubMedGoogle Scholar
  47. Gardner  KD Jr, Glew  RH, Evan  AP, McAteer  JA, Bernstein  J. Why renal cysts grow. Am J Physiol. 1994;266:F3539. PubMedGoogle Scholar
  48. Cook  J, Dougherty  W, Holt  T. Enhanced sensitivity to endotoxin induced by the R-E stimulant, glucan. Circ Shock. 1980;7:22538. PubMedGoogle Scholar
  49. Rylander  R. Endotoxin in the environment. In: Levin J, Alving C, Munford R, Redl H, editors. Bacterial endotoxin: lipopolysaccharides from genes to therapy. New York: Wiley-Liss, Inc. 1995;392:79-90.
  50. Miller  J. Mycotoxins. In: Rylander R, Jacobs R, editors. Organic dusts: exposure, effects and prevention. Boca Raton (FL): Lewis Pubishers, 1994;87-92.
  51. O'Donnell  K. Progress towards a phylogenetic classificaton of Fusarium. Sydowia. 1996;48:5770.
  52. Spiegel  S, Merrill  AH Jr. Sphingolipid metabolism and cell growth regulation. FASEB J. 1996;10:138897. PubMedGoogle Scholar
  53. Deshmukh  GD, Radin  NS, Gattone  V, Shayman  JA. Abnormalities of glycosphingolipid, sulfatide, and ceramide in the polycystic (cpk/cpk) mouse. J Lipid Res. 1994;35:161121. PubMedGoogle Scholar
  54. Hjelle  JT, Dombrink-Kurtzman  M, Nowak  DM, Miller-Hjelle  MA, Darras  F, Dobbie  JW. Ceramide pathways in human polycystic kidney disease. Perit Dial Int. 1996;16:S94.PubMedGoogle Scholar
  55. Riley  RT, Wang  E, Schroeder  JJ, Smith  ER, Plattner  RD, Abbas  H. Evidence for disruption of sphingolipid metabolism as a contributing factor in the toxicity and carcinogenicity of fumonisins. Nat Toxins. 1996;4:315. PubMedGoogle Scholar
  56. Merrill  AH Jr, Liotta  DC, Riley  RT. Fumonisins: fungal toxins that shed light on sphingolipid function. Trends Cell Biol. 1996;6:21823. DOIPubMedGoogle Scholar
  57. Merrill  AH Jr, Grant  AM, Wang  E, Bacon  CW. Lipids and lipid-like compounds of Fusarium. In: Prasad R, Ghannoun MA, editors. Lipids of pathogenic fungi. New York: CRC 1996;199-217.
  58. Rutledge  G, Wilkinson  SG, eds. Microbial lipids, Vol. 1, New York: Academic Press, 1988.
  59. Wright  SD, Kolesnick  RN. Does endotoxin stimulate cells by mimicking ceramide? Immunol Today. 1995;16:294302. DOIPubMedGoogle Scholar
  60. Barber  SA, Detore  G, McNally  R, Vogel  SN. Stimulation of the ceramide pathway partially mimics lipopolysaccharide-induced responses in murine peritoneal macrophages. Infect Immun. 1996;64:3397400.PubMedGoogle Scholar
  61. Ho  AK, Peng  R, Ho  AA, Duffield  R, Dombrink-Kurtzman  MA. Interactions of fumonisins and sphing-oid bases with GTP-binding proteins. Biochem Arch. In press.
  62. Portner  A, Peter-Katalinic  J, Brade  H, Unland  F, Buntemeyer  H, Muthing  J. Structural characterization of gangliosides from resting and endotoxin-stimulated murine B lymphocytes. Biochemistry. 1993;32:1268593. DOIPubMedGoogle Scholar
  63. Ballou  LR, Laulederkind  SJF, Rosloniec  EF, Raghow  R. Ceramide signalling and the immune response. Biochim Biophys Acta. 1996;1301:27387. PubMedGoogle Scholar
  64. Hannun  Y. Functions of ceramide in coordinating cellular responses to stress. Science. 1996;274:18559. DOIPubMedGoogle Scholar
  65. Shayman  JA. Sphingolipids: their role in intracellular signaling and renal growth. J Am Soc Nephrol. 1996;7:17182. PubMedGoogle Scholar
  66. Calvet  JP. Injury and development in polycystic kidney disease. Curr Opin Nephrol Hypertens. 1994;3:3408. DOIPubMedGoogle Scholar
  67. Shayman  JA, Radin  NS. Structure and function of renal glycosphingolipids. Am J Physiol. 1991;260:F291302.PubMedGoogle Scholar
  68. Bibel  DJ, Aly  R, Shah  S, Shinefield  HR. Sphingosines: antimicrobial barriers of the skin. Acta Derm Venereol Suppl (Stockh). 1993;73:40711.
  69. Iwata  M, Herrington  J, Zager  RA. Sphingosine: a mediator of acute renal tubular injury and subsequent cytoresistance. Proc Natl Acad Sci U S A. 1995;92:89704. DOIPubMedGoogle Scholar
  70. Woolf  AS, Neuhaus  TJ, Kolatsi  M, Winyard  PJ, Klein  NJ. Nephron formation is inhibited by lipopolysaccaride and by tumor necrosis factor-a. J Am Soc Nephrol. 1994;5:641.
  71. Counts  RS, Nowak  G, Wyatt  RD, Schnellmann  RG. Nephrotoxicant inhibition of renal proximal tubule cell regeneration. Am J Physiol. 1995;269:F27481.PubMedGoogle Scholar
  72. Lim  CW, Parker  HM, Vesonder  RF, Haschek  WM. Intravenous fumonisin B1 induces cell proliferation and apoptosis in the rat. Nat Toxins. 1996;4:3441. .PubMedGoogle Scholar
  73. Wang  W, Jones  C, Ciacci-Zanella  J, Holt  T, Gilchrist  DG, Dickman  MB. Fumonisins and Alternaria alternata lycopersici toxins: sphinganine analog mycotoxins induce apoptosis in monkey kidney cells. Proc Natl Acad Sci U S A. 1996;93:34615. DOIPubMedGoogle Scholar
  74. Gelderblom  WCA, Kriek  NPJ, Marasas  WFO, Thiel  PG. Toxicity and carcinogenicity of the Fusarium moniliforme metabolite, fumonisin B1. Carcinogenesis. 1991;12:124751. DOIPubMedGoogle Scholar
  75. Woo  D. Apoptosis and loss of renal tissue in polycystic kidney disease. N Engl J Med. 1995;333:1825. DOIPubMedGoogle Scholar
  76. Winyard  PJD, Nauta  J, Lerienman  DS, Hardman  P, Sams  VR, Risdon  RA, Deregulation of cell survival in cystic and dysplastic renal development. Kidney Int. 1996;49:13546. DOIPubMedGoogle Scholar
  77. Mays  RW, Siemers  KA, Fritz  BA, Lowe  AW, van Meer  G, Nelson  WJ. Hierarchy of mechanisms involved in generating Na/K-ATPase polarity in MDCK epithelial cells. J Cell Biol. 1995;130:110515. DOIPubMedGoogle Scholar
  78. Huang  C, Dickman  M, Henderson  G, Jones  C. Repression of protein kinase C and stimulation of cyclic AMP response elements by fumonisin, a fungal encoded toxin which is a carcinogen. Cancer Res. 1995;55:16559. PubMedGoogle Scholar
  79. Moy  GW, Mendoza  LM, Schulz  JR, Swanson  WJ, Glabe  CG, Vacquier  VD. The sea urchin sperm receptor for egg jelly is a modular protein with extensive homology to the human polycystic kidney disease protein, PKD1. J Cell Biol. 1996;133:80917. DOIPubMedGoogle Scholar
  80. Wilkinson  MF, Earle  ML, Triggle  CR, Barnes  S. Interleukin-1b, tumor necrosis factor-a, and LPS enhance calcium channel current in isolated vascular smooth muscle cells of rat tail artery. FASEB J. 1996;10:78591. PubMedGoogle Scholar
  81. Han  J, Lee  J-D, Bibbs  L, Ulevitch  RJ. A MAP kinase targeted by endotoxin and hyperosmolarity in mammalian cells. Science. 1994;265:80811. DOIPubMedGoogle Scholar
  82. Malhotra  R. Collectin receptor (C1q receptor): structure and function. Behring Inst Mitt. 1993;93:25461. PubMedGoogle Scholar
  83. Veis  DJ, Sorenson  CM, Shutter  JR, Korsmeyer  SJ. Bcl-2-deficient mice demonstrate fulminant lympoid apoptosis, polycystic kidneys, and hypopigmented hair. Cell. 1993;75:22940. DOIPubMedGoogle Scholar
  84. Reed  JC. Bcl-2 and the regulation of programmed cell death. J Cell Biol. 1994;124:16. DOIPubMedGoogle Scholar
  85. Martinova  EA, Merrill  AH Jr. Fumonisin B1 alters sphingolipid metabolism and immune function in BALB/c mice: immunologicial responses to fumonisin B1. Mycopathologica. 1995;130:16370. DOIGoogle Scholar

Main Article

Page created: December 21, 2010
Page updated: December 21, 2010
Page reviewed: December 21, 2010
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.