Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 30, Number 11—November 2024
Research

Risk for Facial Palsy after COVID-19 Vaccination, South Korea, 2021–2022

Dongwon Yoon1, Kyungyeon Jung1, Ju Hwan Kim, Hwa Yeon Ko, Byeol-A Yoon2, Ju-Young Shin2Comments to Author , and CoVaSC Investigators
Author affiliation: Sungkyunkwan University Department of Biohealth Regulatory Science, Suwon, South Korea (D. Yoon, K. Jung, J.H. Kim, J.-Y. Shin); Sungkyunkwan University School of Pharmacy, Suwon (D. Yoon, J.H. Kim, H.Y. Ko, J.-Y. Shin); Dong-A University College of Medicine Department of Neurology, Busan, South Korea (B.-A. Yoon); Sungkyunkwan University Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Seoul, South Korea (J.-Y. Shin)

Main Article

Table 2

Incidence risk and incidence risk ratios in a study of risk for facial palsy after COVID-19 vaccination, South Korea, 2021–2022*

Subgroup analyses No. events
Person-years
IR
IRR (95% CI)
Risk window Control window Risk window Control window Risk window Control window
Age group, y
18–29 506 1,005 296.63 693.22 1.71 1.45 1.18 (1.06–1.31)†
30–39 597 1,310 345.53 907.82 1.73 1.44 1.20 (1.09–1.32)†
40–49 990 1,955 579.31 1,347.76 1.71 1.45 1.18 (1.09–1.27)†
50–59 1,204 2,472 760.05 1,647.95 1.58 1.50 1.06 (0.99–1.13)
60–69 1,099 2,176 683.97 1,453.30 1.61 1.50 1.07 (1.00–1.15)
70–79 599 1,113 351.39 760.24 1.70 1.46 1.16 (1.05–1.29)†
>80
216
500

131.96
332.74

1.64
1.50
1.09 (0.93–1.28)
Sex
M 2,849 5,938 1,766.69 3,981.28 1.61 1.49 1.08 (1.03–1.13)†
F
2,362
4,593

1,382.14
3,161.77

1.71
1.45
1.18 (1.12–1.24)†
Health insurance type
National health insurance 5,045 10,170 3,043.69 6,908.08 1.66 1.47 1.13 (1.09–1.16)†
Medical aid
166
361

105.15
234.96

1.58
1.54
1.03 (0.86–1.23)
Region of residence
Metropolitan 3,485 7,020 2,099.87 4,770.18 1.66 1.47 1.13 (1.08–1.17)†
Rural
1,726
3,511

1,048.96
2,372.86

1.65
1.48
1.11 (1.05–1.18)†
Charlson Comorbidity Index score
<5 4,866 9,896 2,948.41 6,705.30 1.65 1.48 1.12 (1.08–1.16)†
>5 345 635 200.43 437.75 1.72 1.45 1.19 (1.04–1.35)†

*Date of vaccination considered day 0, risk window considered days 1–28 postvaccination, and control window considered days 29–240 postvaccination. IR, incidence rate; IRR, incidence rate ratio. †These results remained significant (p<0.05) after applying the Benjamini-Hochberg adjustment to account for multiple comparisons (22).

Main Article

References
  1. Wollersheim  S. US Food and Drug Administration. Vaccines and Related Biological Products Advisory Committee meeting: FDA review of efficacy and safety of Pfizer-BioNTech COVID-19 vaccine emergency use authorization request [cited 2023 Sep 1]. https://www.fda.gov/media/144337/download
  2. US Food and Drug Administration. Vaccines and Related Biological Products Advisory Committee meeting presentation: FDA review of efficacy and safety of Moderna COVID-19 vaccine emergency use authorization request [cited 2023 Sep 1]. https://www.fda.gov/media/144585/download
  3. Polack  FP, Thomas  SJ, Kitchin  N, Absalon  J, Gurtman  A, Lockhart  S, et al.; C4591001 Clinical Trial Group. Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine. N Engl J Med. 2020;383:260315. DOIPubMedGoogle Scholar
  4. El Sahly  HM, Baden  LR, Essink  B, Doblecki-Lewis  S, Martin  JM, Anderson  EJ, et al.; COVE Study Group. Efficacy of the mRNA-1273 SARS-CoV-2 vaccine at completion of blinded phase. N Engl J Med. 2021;385:177485. DOIPubMedGoogle Scholar
  5. Falsey  AR, Sobieszczyk  ME, Hirsch  I, Sproule  S, Robb  ML, Corey  L, et al.; AstraZeneca AZD1222 Clinical Study Group. AstraZeneca AZD1222 Clinical Study Group. Phase 3 safety and efficacy of AZD1222 (ChAdOx1 nCoV-19) Covid-19 vaccine. N Engl J Med. 2021;385:234860. DOIPubMedGoogle Scholar
  6. Sadoff  J, Gray  G, Vandebosch  A, Cárdenas  V, Shukarev  G, Grinsztejn  B, et al.; ENSEMBLE Study Group. Final Analysis of Efficacy and Safety of Single-Dose Ad26.COV2.S. N Engl J Med. 2022;386:84760. DOIPubMedGoogle Scholar
  7. Eviston  TJ, Croxson  GR, Kennedy  PG, Hadlock  T, Krishnan  AV. Bell’s palsy: aetiology, clinical features and multidisciplinary care. J Neurol Neurosurg Psychiatry. 2015;86:135661. DOIPubMedGoogle Scholar
  8. Mutsch  M, Zhou  W, Rhodes  P, Bopp  M, Chen  RT, Linder  T, et al. Use of the inactivated intranasal influenza vaccine and the risk of Bell’s palsy in Switzerland. N Engl J Med. 2004;350:896903. DOIPubMedGoogle Scholar
  9. Law  B. Safety Platform for Emergency vACcines (SPEAC) Project: SO2-D2.1.2 priority list of COVID-19 adverse events of special interest: quarterly update December 2020. Oslo, Norway: Coalition for Epidemic Preparedness Innovations; 2020.
  10. Wan  EYF, Chui  CSL, Ng  VWS, Wang  Y, Yan  VKC, Lam  ICH, et al. Messenger RNA coronavirus disease 2019 (COVID-19) vaccination with BNT162b2 increased risk of Bell’s palsy: a nested case-control and self-controlled case series study. Clin Infect Dis. 2023;76:e2918. DOIPubMedGoogle Scholar
  11. Shibli  R, Barnett  O, Abu-Full  Z, Gronich  N, Najjar-Debbiny  R, Doweck  I, et al. Association between vaccination with the BNT162b2 mRNA COVID-19 vaccine and Bell’s palsy: a population-based study. Lancet Reg Health Eur. 2021;11:100236. DOIPubMedGoogle Scholar
  12. Kim  S, Kang  M, Park  JS, Seok  HY. Risk and characteristics of Bell’s palsy in adults as an adverse event following COVID-19 vaccination: a retrospective study. Acta Neurol Belg. 2023;123:218593. DOIPubMedGoogle Scholar
  13. Li  X, Raventós  B, Roel  E, Pistillo  A, Martinez-Hernandez  E, Delmestri  A, et al. Association between covid-19 vaccination, SARS-CoV-2 infection, and risk of immune mediated neurological events: population based cohort and self-controlled case series analysis. BMJ. 2022;376:e068373. DOIPubMedGoogle Scholar
  14. Patone  M, Handunnetthi  L, Saatci  D, Pan  J, Katikireddi  SV, Razvi  S, et al. Neurological complications after first dose of COVID-19 vaccines and SARS-CoV-2 infection. Nat Med. 2021;27:214453. DOIPubMedGoogle Scholar
  15. Rafati  A, Pasebani  Y, Jameie  M, Yang  Y, Jameie  M, Ilkhani  S, et al. Association of SARS-CoV-2 vaccination or infection with Bell palsy: a systematic review and meta-analysis. JAMA Otolaryngol Head Neck Surg. 2023;149:493504. DOIPubMedGoogle Scholar
  16. Shahsavarinia  K, Mahmoodpoor  A, Sadeghi-Ghyassi  F, Nedayi  A, Razzaghi  A, Zehi Saadat  M, et al. Bell’s palsy and COVID-19 vaccination: a systematic review. Med J Islam Repub Iran. 2022;36:85. DOIPubMedGoogle Scholar
  17. Nham  E, Song  JY, Noh  JY, Cheong  HJ, Kim  WJ. COVID-19 vaccination in Korea: past, present, and the way forward. J Korean Med Sci. 2022;37:e351. DOIPubMedGoogle Scholar
  18. Petersen  I, Douglas  I, Whitaker  H. Self controlled case series methods: an alternative to standard epidemiological study designs. BMJ. 2016;354:i4515. DOIPubMedGoogle Scholar
  19. Walker  JL, Schultze  A, Tazare  J, Tamborska  A, Singh  B, Donegan  K, et al. Safety of COVID-19 vaccination and acute neurological events: A self-controlled case series in England using the OpenSAFELY platform. Vaccine. 2022;40:447987. DOIPubMedGoogle Scholar
  20. Zhu  FC, Li  YH, Guan  XH, Hou  LH, Wang  WJ, Li  JX, et al. Safety, tolerability, and immunogenicity of a recombinant adenovirus type-5 vectored COVID-19 vaccine: a dose-escalation, open-label, non-randomised, first-in-human trial. Lancet. 2020;395:184554. DOIPubMedGoogle Scholar
  21. García-Pérez  J, González-Pérez  M, Castillo de la Osa  M, Borobia  AM, Castaño  L, Bertrán  MJ, et al.; CombiVacS study Group. Immunogenic dynamics and SARS-CoV-2 variant neutralisation of the heterologous ChAdOx1-S/BNT162b2 vaccination: Secondary analysis of the randomised CombiVacS study. EClinicalMedicine. 2022;50:101529. DOIPubMedGoogle Scholar
  22. Benjamini  Y, Hochberg  Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Series B Stat Methodol. 1995;57:289300. DOIGoogle Scholar
  23. Tamaki  A, Cabrera  CI, Li  S, Rabbani  C, Thuener  JE, Rezaee  RP, et al. Incidence of Bell palsy in patients with COVID-19. JAMA Otolaryngol Head Neck Surg. 2021;147:7678. DOIPubMedGoogle Scholar
  24. Kim  HJ, Jeong  S, Song  J, Park  SJ, Oh  YH, Jung  J, et al. Risk of Bell’s palsy following SARS-CoV-2 infection: a nationwide cohort study. Clin Microbiol Infect. 2023;29:15816. DOIPubMedGoogle Scholar
  25. Khurshid  A, Khurshid  M, Sohail  A, Raza  IM, Ahsan  MK, Alam Shah  MUF, et al. Facial palsy as a manifestation of COVID-19: A systematic review of cases. Health Sci Rep. 2022;5:e887. DOIPubMedGoogle Scholar
  26. Lamprinou  M, Sachinidis  A, Stamoula  E, Vavilis  T, Papazisis  G. COVID-19 vaccines adverse events: potential molecular mechanisms. Immunol Res. 2023;71:35672. DOIPubMedGoogle Scholar
  27. Ozonoff  A, Nanishi  E, Levy  O. Bell’s palsy and SARS-CoV-2 vaccines. Lancet Infect Dis. 2021;21:4502. DOIPubMedGoogle Scholar
  28. Lee  Y, Jeong  M, Park  J, Jung  H, Lee  H. Immunogenicity of lipid nanoparticles and its impact on the efficacy of mRNA vaccines and therapeutics. Exp Mol Med. 2023;55:208596. DOIPubMedGoogle Scholar
  29. Soeiro  T, Salvo  F, Pariente  A, Grandvuillemin  A, Jonville-Béra  AP, Micallef  J. Type I interferons as the potential mechanism linking mRNA COVID-19 vaccines to Bell’s palsy. Therapie. 2021;76:3657. DOIPubMedGoogle Scholar
  30. Principi  N, Esposito  S. Do vaccines have a role as a cause of autoimmune neurological syndromes? Front Public Health. 2020;8:361. DOIPubMedGoogle Scholar
  31. Gorodezky  C, Carranza  JM, Bustamante  A, Yescas  P, Martinez  A, Alonso Vilatela  ME. The HLA system and T-cell subsets in Bell’s palsy. Acta Otolaryngol. 1991;111:10704. DOIPubMedGoogle Scholar
  32. Mañós-Pujol  M, Buendia  E, Mestre  M, Jimenéz  R, Gil  E, Menén  JP, et al. Cellular immunity abnormalities in patients with recurrent Bell’s palsy. Clin Otolaryngol Allied Sci. 1987;12:2837. DOIPubMedGoogle Scholar
  33. Hwang  I, Calvit  TB, Cash  BD, Holtzmuller  KC. Bell’s palsy: a rare complication of interferon therapy for hepatitis C. Dig Dis Sci. 2004;49:61920. DOIPubMedGoogle Scholar
  34. Yalçindağ  FN, Alay  C. Bell’s palsy during interferon alpha 2a treatment in a case with Behçet uveitis. F1000Res. 2013;2:245. DOIPubMedGoogle Scholar
  35. Shoaibi  A, Lloyd  PC, Wong  HL, Clarke  TC, Chillarige  Y, Do  R, et al. Evaluation of potential adverse events following COVID-19 mRNA vaccination among adults aged 65 years and older: Two self-controlled studies in the U.S. Vaccine. 2023;41:466678. DOIPubMedGoogle Scholar
  36. Fujinami  RS, von Herrath  MG, Christen  U, Whitton  JL. Molecular mimicry, bystander activation, or viral persistence: infections and autoimmune disease. Clin Microbiol Rev. 2006;19:8094. DOIPubMedGoogle Scholar
  37. Kim  TS, Shin  EC. The activation of bystander CD8+ T cells and their roles in viral infection. Exp Mol Med. 2019;51:19. DOIPubMedGoogle Scholar
  38. Aguinam  ET, Nadesalingam  A, Chan  A, Smith  P, Paloniemi  M, Cantoni  D, et al. Differential T-cell and antibody responses induced by mRNA versus adenoviral vectored COVID-19 vaccines in patients with immunodeficiencies. J Allergy Clin Immunol Glob. 2023;2:100091. DOIPubMedGoogle Scholar
  39. Baugh  RF, Basura  GJ, Ishii  LE, Schwartz  SR, Drumheller  CM, Burkholder  R, et al. Clinical practice guideline: Bell’s palsy. Otolaryngol Head Neck Surg. 2013;149(Suppl):S127.PubMedGoogle Scholar
  40. Lee  JS, Kim  YH. Epidemiological trends of Bell’s palsy treated with steroids in Korea between 2008 and 2018. Muscle Nerve. 2021;63:84551. DOIPubMedGoogle Scholar
  41. Rath  B, Gidudu  JF, Anyoti  H, Bollweg  B, Caubel  P, Chen  YH, et al.; Brighton Collaboration Bell’s Palsy Working Group. Facial nerve palsy including Bell’s palsy: Case definitions and guidelines for collection, analysis, and presentation of immunisation safety data. Vaccine. 2017;35:197283. DOIPubMedGoogle Scholar

Main Article

1These first authors contributed equally to this article.

2These last authors contributed equally to this article.

Page created: August 28, 2024
Page updated: October 22, 2024
Page reviewed: October 22, 2024
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.
file_external