Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 30, Supplement—October 2024
SUPPLEMENT ISSUE
Articles

Common Patterns and Unique Threats in Antimicrobial Resistance as Demonstrated by Global Gonococcal Surveillance

Adriana Le VanComments to Author , Nazia Rahman, Reuel Sandy, Nelson Dozier, Hunter J. Smith, Melissa J. Martin, Katelyn V. Bartlett, Krit Harncharoenkul, Anna Nanava, Tamar Akhvlediani, Paul Rios, Supriya D. Mehta, Walter Agingu, Denis K. Byarugaba, Fred Wabwire-Mangen, Hannah Kibuuka, Bernard Erima, Hope O. Kabatasi, Naiki Attram, Dutsadee Peerapongpaisarn, Wilawan Oransathit, Wirote Oransathit, Umaporn Suksawad, Woradee Lurchachaiwong, Somchai Sriplienchan, Nonlawat Boonyalai, Maneerat Somsri, Nithinart Chaitaveep, Ann Jerse, and Eric Garges
Author affiliation: Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA (A. Le Van, R. Sandy); Uniformed Services University, Bethesda (A. Le Van, R. Sandy, N. Dozier, A. Jerse, E. Garges); Cherokee Nation Strategic Programs, Tulsa, Oklahoma, USA (N. Rahman); Global Emerging Infections Surveillance Branch, Armed Forces Health Surveillance Division, Silver Spring, Maryland, USA (N. Rahman, H.J. Smith); Multidrug Resistant Organism Repository and Surveillance Network, Walter Reed Army Institute of Research, Silver Spring (M.J. Martin, K.V. Bartlett); Walter Reed Army Institute of Research, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand (K. Harncharoenkul, D. Peerapongpaisarn, Wilawan Oransathit, Wirote Oransathit, U. Suksawad, W. Lurchachaiwong, S. Sriplienchan, N. Boonyalai, M. Somsri, N. Chaitaveep); Walter Reed Army Institute of Research Europe-Middle East, Tbilisi, Georgia (A. Nanava, T. Akhvlediani); US Naval Medical Research Unit SOUTH, Lima, Peru (P. Rios); Rush University College of Medicine, Chicago, Illinois, USA (S.D. Mehta); Walter Reed Army Institute of Research-Africa, Kisumu, Kenya (W. Agingu); Makerere University Walter Reed Project, Kampala, Uganda (D.K. Byarugaba); Makerere University College of Veterinary Medicine, Kampala (D.K. Byarugaba, F. Wabwire-Mangen, H. Kibuuka, B. Erima, H.O. Kabatasi); US Naval Medical Research Unit EURAFCENT, Accra, Ghana (N. Attram); Walter Reed Army Institute of Research-Africa, Nairobi, Kenya (E. Garges)

Main Article

Table 1

Summary of phenotypic antimicrobial resistance in study of common patterns and unique threats in antimicrobial resistance as demonstrated by global gonococcal surveillance*

Region Isolates with reduced susceptibility or resistance, no. (%)
Tetracycline Benzylpenicillin Ciprofloxacin Azithromycin Cefixime Ceftriaxone Gentamicin
Thailand, n = 516 500 (96.9) 502 (97.3) 500 (97) 4 (0.77) 2 (0.4) 16 (3.1) 31 (6.0)
Ghana, n = 19 19 (100) 19 (100) 17 (89.5) 0 1 (5.3) 0 7 (36.8)
Peru, n = 208 195 (93.7) 205 (98.5) 186 (89.4) 2 (0.96) 7 (3.4) 3 (1.4) 63 (30.3)
Nairobi, Kenya, n = 27 27 (100) 26 (96.3) 23 (85.1) 0 0 0 1 (3.7)
Kisumu, Kenya, n = 110 108 (98.2) 105 (95.5) 106 (96.4) 2 (1.8) 3 (2.72) 4 (3.63) 26 (23.6)
Uganda, n = 10 9 (90) 10 (100) 9 (90) 0 0 0 2 (20)
Georgia, n = 72 44 (61.1) 50 (69.4) 41 (56.9) 2 (2.8) 11 (15.2) 11 (15.2) 16 (22.2)
Total, N = 962 902 (93.7) 917 (95.3) 882 (91.7) 10 (1.02) 24 (2.5) 34 (3.6) 146 (15.2)

*MICs interpreted according to Clinical and Laboratory Standards Institute criteria when available (22). CLSI resistance breakpoints used for penicillin (I>0.06; R>2.0 μg/mL), tetracycline (I>0.25; R>2.0 μg/mL), and ciprofloxacin (I>0.06; R>1.0 μg/mL) (22). Gonococcal Isolate Surveillance Project breakpoints used for azithromycin (I>1; R>2.0 μg/mL), cefixime (I>0.06; R>0.25 μg/mL), and ceftriaxone (I>0.06; R>0.125 μg/mL) (23,24), because CLSI has not established criteria for resistance to those antimicrobial drugs. Gentamicin breakpoints (I≥8–16 μg/mL; R I>32.0 μg/mL) were determined according to research published by the Centers for Disease Control and Prevention (25).

Main Article

References
  1. World Health Organization. Multi-drug resistant gonorrhoea [cited 2024 Jul 4]. https://www.who.int/news-room/fact-sheets/detail/multi-drug-resistant-gonorrhoea
  2. Kreisel  KM, Spicknall  IH, Gargano  JW, Lewis  FMT, Lewis  RM, Markowitz  LE, et al. Sexually transmitted infections among US women and men: prevalence and incidence estimates, 2018. Sex Transm Dis. 2021;48:20814. DOIPubMedGoogle Scholar
  3. Centers for Disease Control and Prevention. CDC changes recommendations for gonorrhea treatment due to drug resistance [cited 2007 Apr 12]. https://archive.cdc.gov/www_cdc_gov/media/pressrel/2007/r070412a_1697124700.htm
  4. Kenyon  C, Laumen  J, Van Dijck  C, De Baetselier  I, Abdelatti  S, Manoharan-Basil  SS, et al. Gonorrhoea treatment combined with population-level general cephalosporin and quinolone consumption may select for Neisseria gonorrhoeae antimicrobial resistance at the levels of NG-MAST genogroup: An ecological study in Europe. J Glob Antimicrob Resist. 2020;23:37784. DOIPubMedGoogle Scholar
  5. Workowski  KA, Bachmann  LH, Chan  PA, Johnston  CM, Muzny  CA, Park  I, et al. Sexually transmitted infections treatment guidelines, 2021. MMWR Recomm Rep. 2021;70:1187. DOIPubMedGoogle Scholar
  6. World Health Organization. Guidelines for the management of symptomatic sexually transmitted infections. Geneva: The Organization; 2021.
  7. Unemo  M, Golparian  D, Nicholas  R, Ohnishi  M, Gallay  A, Sednaoui  P. High-level cefixime- and ceftriaxone-resistant Neisseria gonorrhoeae in France: novel penA mosaic allele in a successful international clone causes treatment failure. Antimicrob Agents Chemother. 2012;56:127380. DOIPubMedGoogle Scholar
  8. Day  M, Pitt  R, Mody  N, Saunders  J, Rai  R, Nori  A, et al. Detection of 10 cases of ceftriaxone-resistant Neisseria gonorrhoeae in the United Kingdom, December 2021 to June 2022. Euro Surveill. 2022;27:2200803. DOIPubMedGoogle Scholar
  9. Kueakulpattana  N, Wannigama  DL, Luk-In  S, Hongsing  P, Hurst  C, Badavath  VN, et al. Multidrug-resistant Neisseria gonorrhoeae infection in heterosexual men with reduced susceptibility to ceftriaxone, first report in Thailand. Sci Rep. 2021;11:21659. DOIPubMedGoogle Scholar
  10. Centers for Disease Control and Prevention. AMR gonorrhea: two cases of concern identified [cited 2023 Jan 23]. https://archive.cdc.gov/#/details?url=https://www.cdc.gov/std/dstdp/dcl/2023-01-19-bachmann-amr-gonorrhea.htm
  11. Centers for Disease Control and Prevention. Antibiotic resistance threats in the United States, 2019 [cited 2019 Nov 13]. https://www.cdc.gov/antimicrobial-resistance/data-research/threats
  12. World Health Organization. Diagnostics for gonococcal antimicrobial resistance [cited 2023 Jan 23]. https://www.who.int/teams/global-hiv-hepatitis-and-stis-programmes/stis/testing-diagnostics/diagnostics-for-gonococcal-antimicrobial-resistance
  13. Unemo  M, Lahra  MM, Escher  M, Eremin  S, Cole  MJ, Galarza  P, et al. WHO global antimicrobial resistance surveillance for Neisseria gonorrhoeae 2017-18: a retrospective observational study. Lancet Microbe. 2021;2:e62736. DOIPubMedGoogle Scholar
  14. National Academies of Sciences, Engineering, and Medicine; Vermund SH, Geller AB, and Crowley JS, editors. Sexually transmitted infections: adopting a sexual health paradigm. Washington: The National Academies Press; 2021. DOIGoogle Scholar
  15. Boyer  CB, Gaydos  CA, Geller  AB, Garges  EC, Vermund  SH. Sexually transmitted infections in the U.S. military: a sexual health paradigm to address risk behaviors, unintended pregnancy, alcohol use, and sexual trauma. Mil Med. 2022;187:1403. DOIPubMedGoogle Scholar
  16. Sadler  AG, Mengeling  MA, Syrop  CH, Torner  JC, Booth  BM. Lifetime sexual assault and cervical cytologic abnormalities among military women. J Womens Health (Larchmt). 2011;20:1693701. DOIPubMedGoogle Scholar
  17. Garges  E, Early  J, Waggoner  S, Rahman  N, Golden  D, Agan  B, et al. Biomedical response to Neisseria gonorrhoeae and other sexually transmitted infections in the US military. Mil Med. 2019;184(Suppl 2):518. DOIPubMedGoogle Scholar
  18. Tsai  AY, Dueger  E, Macalino  GE, Montano  SM, Tilley  DH, Mbuchi  M, et al. The U.S. military’s Neisseria gonorrhoeae resistance surveillance initiatives in selected populations of five countries. MSMR. 2013;20:257.PubMedGoogle Scholar
  19. Sánchez  JL, Agan  BK, Tsai  AY, Macalino  GE, Wurapa  E, Mbuchi  M, et al. Expanded sexually transmitted infection surveillance efforts in the United States military: a time for action. Mil Med. 2013;178:127180. DOIPubMedGoogle Scholar
  20. Maiden  MC, Bygraves  JA, Feil  E, Morelli  G, Russell  JE, Urwin  R, et al. Multilocus sequence typing: a portable approach to the identification of clones within populations of pathogenic microorganisms. Proc Natl Acad Sci U S A. 1998;95:31405. DOIPubMedGoogle Scholar
  21. Kwong  JC, Gonçalves da Silva  A, Dyet  K, Williamson  DA, Stinear  TP, Howden  BP, et al. NGMASTER:in silico multi-antigen sequence typing for Neisseria gonorrhoeae. Microb Genom. 2016;2:e000076. DOIPubMedGoogle Scholar
  22. The Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing, 33rd edition. Supplement M100. Wayne (PA): The Institute; 2023.
  23. Centers for Disease Control and Prevention. Gonococcal Isolate Surveillance Project (GISP) and Enhanced GISP (eGISP) protocol [cited 2022 Aug 15]. https://stacks.cdc.gov/view/cdc/125949
  24. Centers for Disease Control and Prevention. Gonococcal isolate surveillance project (GISP) profiles [cited 2024 Jul 22]. https://www.cdc.gov/sti-statistics/gisp-profiles/index.html
  25. Mann  LM, Kirkcaldy  RD, Papp  JR, Torrone  EA. Susceptibility of Neisseria gonorrhoeae to gentamicin-gonococcal isolate surveillance project, 2015-2016. Sex Transm Dis. 2018;45:968. DOIPubMedGoogle Scholar
  26. Golparian  D, Jacobsson  S, Holley  CL, Shafer  WM, Unemo  M. High-level in vitro resistance to gentamicin acquired in a stepwise manner in Neisseria gonorrhoeae. J Antimicrob Chemother. 2023;78:176978. DOIPubMedGoogle Scholar
  27. Holley  CL, Dhulipala  V, Balthazar  JT, Le Van  A, Begum  AA, Chen  SC, et al. A single amino acid substitution in elongation factor G can confer low-level gentamicin resistance in Neisseria gonorrhoeae. Antimicrob Agents Chemother. 2022;66:e0025122. DOIPubMedGoogle Scholar
  28. Lyu  M, Moseng  MA, Reimche  JL, Holley  CL, Dhulipala  V, Su  CC, et al. Cryo-EM structures of a gonococcal multidrug efflux pump illuminate a mechanism of drug recognition and resistance. MBio. 2020;11:e0099620. DOIPubMedGoogle Scholar
  29. Cartee  JC, Joseph  SJ, Weston  E, Pham  CD, Thomas  JC IV, Schlanger  K, et al. Phylogenomic comparison of Neisseria gonorrhoeae causing disseminated gonococcal infections and uncomplicated gonorrhea in Georgia, United States. Open Forum Infect Dis. 2022;9:ofac247. DOIPubMedGoogle Scholar
  30. World Health Organization. Reporting countries (WHO-GASP) [cited 2020 Nov 12]. https://www.who.int/data/gho/data/indicators/indicator-details/GHO/who-gasp-reporting-countries
  31. Jorge-Berrocal  A, Vargas-Herrera  N, Benites  C, Salazar-Quispe  F, Mayta-Barrios  M, Barrios-Cárdenas  YJ, et al.; Neisseria gonorrhoeae Surveillance Working Group. Neisseria gonorrhoeae Surveillance Working Group. Antimicrobial susceptibility of Neisseria gonorrhoeae isolates from Peru, 2018 and 2019. Sex Transm Dis. 2022;49:6826. DOIPubMedGoogle Scholar
  32. Qquellon  J, Vargas  SK, Eguiluz  M, Vasquez  F, Durand  D, Allan-Blitz  LT, et al. Extra-genital Neisseria gonorrhoeae infections with genetic mutations conferring ciprofloxacin resistance among men who have sex with men and transgender women in Lima, Peru. Int J STD AIDS. 2023;34:24550. DOIPubMedGoogle Scholar
  33. Sandoval  MM, Bardach  A, Rojas-Roque  C, Alconada  T, Gomez  JA, Pinto  T, et al. Antimicrobial resistance of Neisseria gonorrhoeae in Latin American countries: a systematic review. J Antimicrob Chemother. 2023;78:132236. DOIPubMedGoogle Scholar
  34. Workneh  M, Hamill  MM, Kakooza  F, Mande  E, Wagner  J, Mbabazi  O, et al. Antimicrobial resistance of Neisseria gonorrhoeae in a newly implemented surveillance program in Uganda: surveillance report. JMIR Public Health Surveill. 2020;6:e17009. DOIPubMedGoogle Scholar
  35. Unemo  M, Shafer  WM. Antimicrobial resistance in Neisseria gonorrhoeae in the 21st century: past, evolution, and future. Clin Microbiol Rev. 2014;27:587613. DOIPubMedGoogle Scholar
  36. Butler  KR, Lee  D, Hollberg  M, Posey  DL. Overseas gonorrhea screening among newly arrived refugees during 2018. J Immigr Minor Health. 2021;23:13548. DOIPubMedGoogle Scholar
  37. Desai  AN, Mohareb  AM, Hauser  N, Abbara  A. Antimicrobial resistance and human mobility. Infect Drug Resist. 2022;15:12733. DOIPubMedGoogle Scholar
  38. Sirivongrangson  P, Girdthep  N, Sukwicha  W, Buasakul  P, Tongtoyai  J, Weston  E, et al.; EGASP Thailand Workgroup. The first year of the global Enhanced Gonococcal Antimicrobial Surveillance Programme (EGASP) in Bangkok, Thailand, 2015-2016. PLoS One. 2018;13:e0206419. DOIPubMedGoogle Scholar
  39. Bachmann  LH, Barbee  LA, Chan  P, Reno  H, Workowski  KA, Hoover  K, et al. CDC clinical guidelines on the use of doxycycline postexposure prophylaxis for bacterial sexually transmitted infection prevention, United States, 2024. MMWR Recomm Rep. 2024;73:18. DOIPubMedGoogle Scholar
  40. Molina  JM, Charreau  I, Chidiac  C, Pialoux  G, Cua  E, Delaugerre  C, et al.; ANRS IPERGAY Study Group. Post-exposure prophylaxis with doxycycline to prevent sexually transmitted infections in men who have sex with men: an open-label randomised substudy of the ANRS IPERGAY trial. Lancet Infect Dis. 2018;18:30817. DOIPubMedGoogle Scholar
  41. Bolan  RK, Beymer  MR, Weiss  RE, Flynn  RP, Leibowitz  AA, Klausner  JD. Doxycycline prophylaxis to reduce incident syphilis among HIV-infected men who have sex with men who continue to engage in high-risk sex: a randomized, controlled pilot study. Sex Transm Dis. 2015;42:98103. DOIPubMedGoogle Scholar
  42. Luetkemeyer  AF, Donnell  D, Dombrowski  JC, Cohen  S, Grabow  C, Brown  CE, et al.; DoxyPEP Study Team. DoxyPEP Study Team. Postexposure doxycycline to prevent bacterial sexually transmitted infections. N Engl J Med. 2023;388:1296306. DOIPubMedGoogle Scholar
  43. Peters  RPH, McIntyre  JA, Garrett  N, Brink  AJ, Celum  CL, Bekker  LG. Doxycycline post-exposure prophylaxis for sexually transmitted infections in South Africa. South Afr J HIV Med. 2023;24:1510. DOIPubMedGoogle Scholar
  44. Cehovin  A, Jolley  KA, Maiden  MCJ, Harrison  OB, Tang  CM. Association of Neisseria gonorrhoeae plasmids with distinct lineages and the economic status of their country of origin. J Infect Dis. 2020;222:182636. DOIPubMedGoogle Scholar
  45. Roberts  MC, Knapp  JS. Transfer of beta-lactamase plasmids from Neisseria gonorrhoeae to Neisseria meningitidis and commensal Neisseria species by the 25.2-megadalton conjugative plasmid. Antimicrob Agents Chemother. 1988;32:14302. DOIPubMedGoogle Scholar
  46. Perry  CR, Scangarella-Oman  NE, Millns  H, Flight  W, Gatsi  S, Jakielaszek  C, et al. Efficacy and safety of gepotidacin as treatment of uncomplicated urogenital gonorrhea (EAGLE-1): design of a randomized, comparator-controlled, phase 3 study. Infect Dis Ther. 2023;12:230720. DOIPubMedGoogle Scholar
  47. National Institute of Allergy and Infectious Diseases. NIH statement on preliminary efficacy results of first-in-class gonorrhea antibiotic developed through public-private partnership [cited 2023 Nov 1]. https://www.niaid.nih.gov/news-events/nih-statement-preliminary-efficacy-results-first-class-gonorrhea-antibiotic-developed

Main Article

Page created: October 30, 2024
Page updated: November 11, 2024
Page reviewed: November 11, 2024
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.
file_external