Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 30, Supplement—October 2024
SUPPLEMENT ISSUE
Articles

Azithromycin Resistance Patterns in Escherichia coli and Shigella before and after COVID-19, Kenya

Elizabeth A. Odundo, Erick C. Kipkirui, Margaret C. Koech, Mary C. Kirui, Ronald K. Kirera, Nancy C. Kipkemoi, Janet N. Ndonye, Alex Ragalo, Collins K. Kigen, James W. Muturi, Vanessa N. Onyonyi, Gathii Kimita, Erick K. Muthanje, Marissa K. Hetrich, Evelyn W. Mahugu, Kirti K. Tiwari, and Hunter J. SmithComments to Author 
Author affiliation: Kenya Medical Research Institute, Kericho and Kisumu, Kenya (E.A. Odundo, E.C. Kipkirui, M.C. Koech, M.C. Kirui, R.K. Kirera, N.C. Kipkemoi, J.N. Ndonye, A. Ragalo, C.K. Kigen, J.W. Muturi, V.N. Onyonyi, G. Kimita, E.K. Muthanje); Walter Reed Army Institute of Research–Africa, Kericho and Kisumu (E.A. Odundo, E.C. Kipkirui, M.C. Koech, M.C. Kirui, R.K. Kirera, N.C. Kipkemoi, J.N. Ndonye, A. Ragalo, C.K. Kigen, J.W. Muturi, V.N. Onyonyi, G. Kimita, E.K. Muthanje, K.K. Tiwari); Cherokee Nation Strategic Programs, Silver Spring, Maryland, USA (M.K. Hetrich); Armed Forces Health Surveillance Division, Silver Spring (M.K. Hetrich, E.W. Mahugu, H.J. Smith); General Dynamics, Silver Spring (E.W. Mahugu)

Main Article

Table 1

Characteristics of Escherichia coli and Shigella cases in Kenya before (2017–2019) and after (2022–2023) COVID-19*

Characteristic E. coli, n = 116 Shigella, n = 109 p value†
Median age, y (interquartile range)
7 (3–25)
18 (4–28)
0.02
Age group 0.01
Children <18 y 75 (64.7) 52 (47.7)
Adults >18 y
41 (35.3)
57 (52.3)

Study period 0.17
Pre–COVID-19, 2017–2019 63 (54.3) 69 (63.3)
Post–COVID-19, 2022–2023
53 (45.7)
40 (36.7)

County site 0.96
Busia County Referral Hospital 18 (15.5) 15 (13.8)
Kericho County Referral Hospital 40 (34.5) 38 (34.9)
Kombewa County Hospital 10 (8.6) 7 (6.4)
Kisii Teaching and Referral Hospital 30 (25.9) 31 (28.4)
Uasin Gishu 17 (14.7) 18 (16.5)
Lamu
1 (0.9)
0

Diarrhea severity 0.75
No acute diarrhea 3 (2.6) 1 (0.9)
Acute diarrhea‡ 53 (46.5) 50 (45.9)
Severe acute diarrhea§
58 (50.9)
58 (53.2)

Water source§
Municipal 54 (47.0) 56 (51.4) 0.51
Rain 22 (19.1) 30 (27.5) 0.14
Borehole 22 (19.1) 18 (16.5) 0.61
Spring 9 (7.8) 18 (16.5) 0.046
Well 7 (6.1) 11 (10.1) 0.27
Bottle 3 (2.6) 4 (3.7) 0.72
Tap 1 (0.9) 0 >0.99
Stream 1 (0.9) 0 >0.99
Other
0
1 (0.9)
0.49
Water treatment¶
No treatment 81 (70.4) 74 (67.9) 0.68
Boil 20 (17.4) 22 (20.2) 0.59
Distillation 0 1 (0.9) 0.49
Chemical 1 (0.9) 1 (0.9) >0.99
Chlorine 0 1 (0.9) 0.49
Water guard
14 (12.2)
10 (9.2)
0.47
Ciprofloxacin susceptibility (15) 0.25
Susceptible 110 (97.3) 108 (100)
Intermediate 0 0
Resistant
3 (2.7)
0

Levofloxacin susceptibility (15) 0.25
Susceptible 110 (97.3) 108 (100)
Intermediate 0 0
Resistant
3 (2.7)
0

Azithromycin susceptibility (15) <0.001
Susceptible 89 (76.7) 105 (96.3)
Intermediate 1 (0.9) 0 (0)
Resistant 26 (22.4) 4 (3.7)

*Values are no. (%) except as indicated. One adult E. coli case was missing data and removed from denominators for the following variables: diarrhea severity, water source, and water treatment. Four cases (3 E. coli and 1 Shigella) had inconclusive ciprofloxacin and levofloxacin susceptibility results and were excluded from susceptibility profiles. Any missing data were excluded from analysis. †We obtained p values by using the Wilcoxon rank sum test, Fisher exact test, or Pearson χ2 test, as appropriate. ‡Defined as 3–5 loose stools over a 24-h period. §Defined as >6 loose stools over a 24-h period. ¶Participants could select multiple water sources or treatments.

Main Article

References
  1. Troeger  C, Blacker  BF, Khalil  IA, Rao  PC, Cao  S, Zimsen  SRM, et al.; GBD 2016 Diarrhoeal Disease Collaborators. Estimates of the global, regional, and national morbidity, mortality, and aetiologies of diarrhoea in 195 countries: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Infect Dis. 2018;18:121128. DOIPubMedGoogle Scholar
  2. Shakoor  S, Platts-Mills  JA, Hasan  R. Antibiotic-resistant enteric infections. Infect Dis Clin North Am. 2019;33:110523. DOIPubMedGoogle Scholar
  3. Murray  CJL, Ikuta  KS, Sharara  F, Swetschinski  L, Robles Aguilar  G, Gray  A, et al.; Antimicrobial Resistance Collaborators. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet. 2022;399:62955. DOIPubMedGoogle Scholar
  4. Ashbaugh  H, Pomeroy  CD, Baishya  M, Creppage  K, Bazaco  S, Johnson  M, et al. Antimicrobial resistance of enteric pathogens in the Military Health System, 2009 - 2019. BMC Public Health. 2022;22:2300. DOIPubMedGoogle Scholar
  5. Tribble  DR. Antibiotic therapy for acute watery diarrhea and dysentery. Mil Med. 2017;182(S2):1725. DOIPubMedGoogle Scholar
  6. Riddle  MS, Connor  BA, Beeching  NJ, DuPont  HL, Hamer  DH, Kozarsky  P, et al. Guidelines for the prevention and treatment of travelers’ diarrhea: a graded expert panel report. J Travel Med. 2017;24(suppl_1):S5774. DOIPubMedGoogle Scholar
  7. Muloi  D, Fèvre  EM, Bettridge  J, Rono  R, Ong’are  D, Hassell  JM, et al. A cross-sectional survey of practices and knowledge among antibiotic retailers in Nairobi, Kenya. J Glob Health. 2019;9:010412. DOIPubMedGoogle Scholar
  8. Maina  M, Mwaniki  P, Odira  E, Kiko  N, McKnight  J, Schultsz  C, et al. Antibiotic use in Kenyan public hospitals: Prevalence, appropriateness and link to guideline availability. Int J Infect Dis. 2020;99:108. DOIPubMedGoogle Scholar
  9. Acam  J, Kuodi  P, Medhin  G, Makonnen  E. Antimicrobial prescription patterns in East Africa: a systematic review. Syst Rev. 2023;12:18. DOIPubMedGoogle Scholar
  10. Zaawari  A, Khaliq  MA. The indiscriminate use of azithromycin during COVID-19 era: A potential driver for antimicrobial resistance. Ann Med Surg (Lond). 2022;79:103957. DOIPubMedGoogle Scholar
  11. Adebisi  YA, Jimoh  ND, Ogunkola  IO, Uwizeyimana  T, Olayemi  AH, Ukor  NA, et al. The use of antibiotics in COVID-19 management: a rapid review of national treatment guidelines in 10 African countries. Trop Med Health. 2021;49:51. DOIPubMedGoogle Scholar
  12. Kimathi  G, Kiarie  J, Njarambah  L, Onditi  J, Ojakaa  D. A cross-sectional study of antimicrobial use among self-medicating COVID-19 cases in Nyeri County, Kenya. Antimicrob Resist Infect Control. 2022;11:111. DOIPubMedGoogle Scholar
  13. Mugo  PM, Mumbi  A, Munene  D, Nzinga  J, Molyneux  S, Barasa  E; PSK COVID-19 Response Taskforce. Experiences of and response to the COVID-19 pandemic at private retail pharmacies in Kenya: a mixed-methods study. BMJ Open. 2022;12:e058688. DOIPubMedGoogle Scholar
  14. Subramanya  SH, Czyż  DM, Acharya  KP, Humphreys  H. The potential impact of the COVID-19 pandemic on antimicrobial resistance and antibiotic stewardship. Virusdisease. 2021;32:3307. DOIPubMedGoogle Scholar
  15. Morgan  DJ, Okeke  IN, Laxminarayan  R, Perencevich  EN, Weisenberg  S. Non-prescription antimicrobial use worldwide: a systematic review. Lancet Infect Dis. 2011;11:692701. DOIPubMedGoogle Scholar
  16. Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing; twenty-fifth informational supplement (M100-S25). Wayne (PA): The Institute; 2015.
  17. Andrews  S. Fast QC. A quality control tool for high throughput sequence data. 2023 [cited 2024 Feb 5]. https://www.bioinformatics.babraham.ac.uk/projects/fastqc
  18. Chen  S, Zhou  Y, Chen  Y, Gu  J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics. 2018;34:i88490. DOIPubMedGoogle Scholar
  19. Gurevich  A, Saveliev  V, Vyahhi  N, Tesler  G. QUAST: quality assessment tool for genome assemblies. Bioinformatics. 2013;29:10725. DOIPubMedGoogle Scholar
  20. Sherry  NL, Horan  KA, Ballard  SA, Gonҫalves da Silva  A, Gorrie  CL, Schultz  MB, et al. An ISO-certified genomics workflow for identification and surveillance of antimicrobial resistance. Nat Commun. 2023;14:60. DOIPubMedGoogle Scholar
  21. Carattoli  A, Hasman  H. PlasmidFinder and in silico pMLST: identification and typing of plasmid replicons in whole-genome sequencing (WGS). Methods Mol Biol. 2020;2075:28594. DOIPubMedGoogle Scholar
  22. Waters  NR, Abram  F, Brennan  F, Holmes  A, Pritchard  L. Easy phylotyping of Escherichia coli via the EzClermont web app and command-line tool. Access Microbiol. 2020;2:acmi000143. DOIPubMedGoogle Scholar
  23. Roer  L, Tchesnokova  V, Allesøe  R, Muradova  M, Chattopadhyay  S, Ahrenfeldt  J, et al. Development of a web tool for Escherichia coli subtyping based on fimH alleles. J Clin Microbiol. 2017;55:253843. DOIPubMedGoogle Scholar
  24. Zhang  X, Payne  M, Nguyen  T, Kaur  S, Lan  R. Cluster-specific gene markers enhance Shigella and enteroinvasive Escherichia coli in silico serotyping. Microb Genom. 2021;7:000704. DOIPubMedGoogle Scholar
  25. Kille  B, Nute  MG, Huang  V, Kim  E, Phillippy  AM, Treangen  TJ. Parsnp 2.0: scalable core-genome alignment for massive microbial datasets. Bioinformatics. 2024;40:btae311. DOIPubMedGoogle Scholar
  26. Ciccarelli  FD, Doerks  T, von Mering  C, Creevey  CJ, Snel  B, Bork  P. Toward automatic reconstruction of a highly resolved tree of life. Science. 2006;311:12837. DOIPubMedGoogle Scholar
  27. Swierczewski  BE, Odundo  EA, Koech  MC, Ndonye  JN, Kirera  RK, Odhiambo  CP, et al. Enteric pathogen surveillance in a case-control study of acute diarrhoea in the town of Kisii, Kenya. J Med Microbiol. 2013;62:17746. DOIPubMedGoogle Scholar
  28. Guitor  AK, Katyukhina  A, Mokomane  M, Lechiile  K, Goldfarb  DM, Wright  GD, et al. Minimal impact on the resistome of children in Botswana after azithromycin treatment for acute severe diarrhoeal disease. J Infect Dis. 2024;230:23949. DOIPubMedGoogle Scholar
  29. Phuc Nguyen  MC, Woerther  PL, Bouvet  M, Andremont  A, Leclercq  R, Canu  A. Escherichia coli as reservoir for macrolide resistance genes. Emerg Infect Dis. 2009;15:164850. DOIPubMedGoogle Scholar

Main Article

Page created: October 16, 2024
Page updated: November 11, 2024
Page reviewed: November 11, 2024
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.
file_external