Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 31, Number 3—March 2025
Synopsis

Corynebacterium diphtheriae Infections, South Africa, 2015–2023

Mignon du PlessisComments to Author , Rito Mikhari, Linda de Gouveia, Noluthando Duma, Tamsin Lovelock, Charlene Lawrence, Prasha Mahabeer, Yesholata Mahabeer, Nevashan Govender, Susan Nzenze, Jonathan Featherston, Mishalan Moodley, Jocelyn Moyes, Sibongile Walaza, Cheryl Cohen, and Anne von Gottberg
Author affiliation: National Health Laboratory Service, Johannesburg, South Africa (M. du Plessis, R. Mikhari, L. de Gouveia, N. Duma, N. Govender, S. Nzenze, J. Featherston, M. Moodley, J. Moyes, S. Walaza, C. Cohen, A. von Gottberg); University of the Witwatersrand, Johannesburg (M. du Plessis, R. Mikhari, S. Walaza, C. Cohen, A. von Gottberg); Stellenbosch University and Tygerberg Hospital, Cape Town, South Africa (T. Lovelock); Western Cape Department of Health, Cape Town (C. Lawrence); National Health Laboratory Service, Durban, South Africa (P. Mahabeer, Y. Mahabeer); University of Kwazulu-Natal, Durban (P. Mahabeer, Y. Mahabeer); University of Cape Town, Cape Town (A. von Gottberg)

Main Article

Table 2

Clinical characteristics of Corynebacterium diphtheriae isolates, South Africa, 2015–2023*

Clinical category No. isolates/total (%) Sequence type/sublineage†
Total no. isolates
84
NA
Respiratory diphtheria 27/84 (32) NA
Toxin positive 26/27 (96) ST378/SL265, n = 20; ST905/SL393, n = 1; ST906/SL394, n = 5
Toxin negative‡
1/27 (4)
ST395/SL31, n = 1
Endocarditis 14/84 (17) NA
Toxin positive 0 NA
Toxin negative
14/14 (100)
ST391/SL52, n = 1; ST395/SL31, n = 2; ST743/SL31, n = 1; ST885/SL31, n = 8; ST887/SL31, n = 1; ST924/SL396, n = 1
Cutaneous diphtheria 22/84 (26) NA
Toxin positive 2/22 (9) ST378/SL265, n = 2
Toxin negative
20/22 (91)
ST395/SL31, n = 5; ST608/SL259, n = 2§; ST885/SL31, n = 2; ST886/SL389, n = 3; ST888/SL31, n = 2; ST890/SL390, n = 1; ST891/SL391, n = 2; ST894/SL392, n = 1; ST896/SL31, n = 1; ST964/SL397, n = 1
Nonspecific respiratory illness 5/84 (6) NA
Toxin positive 0 NA
Toxin negative
5/5 (100)
ST395/SL31, n = 1; ST886/SL389, n = 1; ST888/SL31, n = 1; ST904/SL31, n = 2
Asymptomatic carrier¶ 16/84 (19) NA
Toxin positive 14/16 (88) ST378/SL265, n = 7; ST906/SL394, n = 7
Toxin negative 2/16 (13) ST395/SL31, n = 1; ST885/SL31, n = 1

*Total number of isolates was 84 from 83 patients. NA, not applicable; SL, sublineage; ST, sequence type. †Sublineage identified by using core genome multilocus sequence typing (26). ‡One patient with respiratory diphtheria harbored toxigenic ST378 and nontoxigenic ST395 in their throat. §Sublineage not assigned for 1 isolate. ¶Contacts of symptomatic patients (did not develop respiratory symptoms).

Main Article

References
  1. World Health Organization. Diphtheria outbreaks: comprehensive guidance for the public health preparedness and response in the WHO African Region. 2024 [cited 2024 Mar 6]. https://iris.who.int/handle/10665/376838
  2. Agrawal  R, Murmu  J, Kanungo  S, Pati  S. “Nigeria on alert: Diphtheria outbreaks require urgent action” - A critical look at the current situation and potential solutions. New Microbes New Infect. 2023;52:101100. DOIPubMedGoogle Scholar
  3. Finger  F, Funk  S, White  K, Siddiqui  MR, Edmunds  WJ, Kucharski  AJ. Real-time analysis of the diphtheria outbreak in forcibly displaced Myanmar nationals in Bangladesh. BMC Med. 2019;17:58. DOIPubMedGoogle Scholar
  4. Dangel  A, Berger  A, Konrad  R, Bischoff  H, Sing  A. Geographically diverse clusters of nontoxigenic Corynebacterium diphtheriae infection, Germany, 2016–2017. Emerg Infect Dis. 2018;24:123945. DOIPubMedGoogle Scholar
  5. Hoefer  A, Pampaka  D, Herrera-León  S, Peiró  S, Varona  S, López-Perea  N, et al. Molecular and epidemiological characterization of toxigenic and nontoxigenic Corynebacterium diphtheriae, Corynebacterium belfantii, Corynebacterium rouxii, and Corynebacterium ulcerans isolates identified in Spain from 2014 to 2019. J Clin Microbiol. 2021;59:e0241020. DOIPubMedGoogle Scholar
  6. Gower  CM, Scobie  A, Fry  NK, Litt  DJ, Cameron  JC, Chand  MA, et al. The changing epidemiology of diphtheria in the United Kingdom, 2009 to 2017. Euro Surveill. 2020;25:1900462. DOIPubMedGoogle Scholar
  7. Gao  H, Lau  EHY, Cowling  BJ. Waning immunity after receipt of pertussis, diphtheria, tetanus, and polio-related vaccines: a systematic review and meta-analysis. J Infect Dis. 2022;225:55766. DOIPubMedGoogle Scholar
  8. Anderson  RM. The concept of herd immunity and the design of community-based immunization programmes. Vaccine. 1992;10:92835. DOIPubMedGoogle Scholar
  9. Truelove  SA, Keegan  LT, Moss  WJ, Chaisson  LH, Macher  E, Azman  AS, et al. Clinical and epidemiological aspects of diphtheria: a systematic review and pooled analysis. Clin Infect Dis. 2020;71:8997. DOIPubMedGoogle Scholar
  10. Holmes  RK. Biology and molecular epidemiology of diphtheria toxin and the tox gene. J Infect Dis. 2000;181(Suppl 1):S15667. DOIPubMedGoogle Scholar
  11. Zakikhany  K, Neal  S, Efstratiou  A. Emergence and molecular characterisation of non-toxigenic tox gene-bearing Corynebacterium diphtheriae biovar mitis in the United Kingdom, 2003-2012. Euro Surveill. 2014;19:20819. DOIPubMedGoogle Scholar
  12. Billard-Pomares  T, Rouyer  C, Walewski  V, Badell-Ocando  E, Dumas  M, Zumelzu  C, et al. Diagnosis in France of a non-toxigenic tox gene–bearing strain of Corynebacterium diphtheriae in a young male back from Senegal. Open Forum Infect Dis. 2017;4:ofw271. DOIPubMedGoogle Scholar
  13. Clinton  LK, Bankowski  MJ, Shimasaki  T, Sae-Ow  W, Whelen  AC, O’Connor  N, et al. Culture-negative prosthetic valve endocarditis with concomitant septicemia due to a nontoxigenic Corynebacterium diphtheriae biotype gravis isolate in a patient with multiple risk factors. J Clin Microbiol. 2013;51:39002. DOIPubMedGoogle Scholar
  14. Wojewoda  CM, Koval  CE, Wilson  DA, Chakos  MH, Harrington  SM. Bloodstream infection caused by nontoxigenic Corynebacterium diphtheriae in an immunocompromised host in the United States. J Clin Microbiol. 2012;50:21702. DOIPubMedGoogle Scholar
  15. Belsey  MA, LeBlanc  DR. Skin infections and the epidemiology of diphtheria: acquisition and persistence of C diphtheriae infections. Am J Epidemiol. 1975;102:17984. DOIPubMedGoogle Scholar
  16. Forde  BM, Henderson  A, Playford  EG, Looke  D, Henderson  BC, Watson  C, et al. Fatal respiratory diphtheria caused by ß-lactam–resistant Corynebacterium diphtheriae. Clin Infect Dis. 2021;73:e45318. DOIPubMedGoogle Scholar
  17. Hennart  M, Panunzi  LG, Rodrigues  C, Gaday  Q, Baines  SL, Barros-Pinkelnig  M, et al. Population genomics and antimicrobial resistance in Corynebacterium diphtheriae. Genome Med. 2020;12:107. DOIPubMedGoogle Scholar
  18. Brémont  S, Passet  V, Hennart  M, Fonteneau  L, Toubiana  J, Badell  E, et al. Multidrug-resistant Corynebacterium diphtheriae in people with travel history from West Africa to France, March to September 2023. Euro Surveill. 2023;28:2300615. DOIPubMedGoogle Scholar
  19. Konrad  R, Berger  A, Huber  I, Boschert  V, Hörmansdorfer  S, Busch  U, et al. Matrix-assisted laser desorption/ionisation time-of-flight (MALDI-TOF) mass spectrometry as a tool for rapid diagnosis of potentially toxigenic Corynebacterium species in the laboratory management of diphtheria-associated bacteria. Euro Surveill. 2010;15:19699. DOIPubMedGoogle Scholar
  20. Williams  MM, Waller  JL, Aneke  JS, Weigand  MR, Diaz  MH, Bowden  KE, et al. Detection and characterization of diphtheria toxin gene-bearing Corynebacterium species through a new real-time PCR assay. J Clin Microbiol. 2020;58:e0063920. DOIPubMedGoogle Scholar
  21. Engler  KH, Glushkevich  T, Mazurova  IK, George  RC, Efstratiou  A. A modified Elek test for detection of toxigenic corynebacteria in the diagnostic laboratory. J Clin Microbiol. 1997;35:4958. DOIPubMedGoogle Scholar
  22. Clinical and Laboratory Standards Institute. Methods for antimicrobial dilution and disk susceptibility testing of infrequently isolated or fastidious bacteria; third edition (M45). Wayne (PA): The Institute; 2015.
  23. du Plessis  M, Wolter  N, Allam  M, de Gouveia  L, Moosa  F, Ntshoe  G, et al. Molecular characterization of Corynebacterium diphtheriae outbreak isolates, South Africa, March–June 2015. Emerg Infect Dis. 2017;23:130815. DOIPubMedGoogle Scholar
  24. Bankevich  A, Nurk  S, Antipov  D, Gurevich  AA, Dvorkin  M, Kulikov  AS, et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol. 2012;19:45577. DOIPubMedGoogle Scholar
  25. Manni  M, Berkeley  MR, Seppey  M, Zdobnov  EM. BUSCO: assessing genomic data quality and beyond. Curr Protoc. 2021;1:e323. DOIPubMedGoogle Scholar
  26. Guglielmini  J, Hennart  M, Badell  E, Toubiana  J, Criscuolo  A, Brisse  S. Genomic epidemiology and strain taxonomy of Corynebacterium diphtheriae. J Clin Microbiol. 2021;59:e0158121. DOIPubMedGoogle Scholar
  27. Hennart  M, Crestani  C, Bridel  S, Armatys  N, Brémont  S, Carmi-Leroy  A, et al. A global Corynebacterium diphtheriae genomic framework sheds light on current diphtheria reemergence. Peer Community J. 2023;3:e76. DOIGoogle Scholar
  28. Arango-Argoty  G, Garner  E, Pruden  A, Heath  LS, Vikesland  P, Zhang  L. DeepARG: a deep learning approach for predicting antibiotic resistance genes from metagenomic data. Microbiome. 2018;6:23. DOIPubMedGoogle Scholar
  29. Shen  W, Le  S, Li  Y, Hu  F. SeqKit: a cross-platform and ultrafast toolkit for FASTA/Q file manipulation. PLoS One. 2016;11:e0163962. DOIPubMedGoogle Scholar
  30. Criscuolo  A. A fast alignment-free bioinformatics procedure to infer accurate distance-based phylogenetic trees from genome assemblies. Res Ideas Outcomes. 2019;5:e36178. DOIGoogle Scholar
  31. Didelot  X, Falush  D. Inference of bacterial microevolution using multilocus sequence data. Genetics. 2007;175:125166. DOIPubMedGoogle Scholar
  32. Dazas  M, Badell  E, Carmi-Leroy  A, Criscuolo  A, Brisse  S. Taxonomic status of Corynebacterium diphtheriae biovar Belfanti and proposal of Corynebacterium belfantii sp. nov. Int J Syst Evol Microbiol. 2018;68:382631. DOIPubMedGoogle Scholar
  33. Oren  A, Garrity  GM. Notification that new names of prokaryotes, new combinations, and new taxonomic opinions have appeared in volume 68, part 12, of the IJSEM. Int J Syst Evol Microbiol. 2019;69:6001. DOIPubMedGoogle Scholar
  34. Mahomed  S, Archary  M, Mutevedzi  P, Mahabeer  Y, Govender  P, Ntshoe  G, et al. An isolated outbreak of diphtheria in South Africa, 2015. Epidemiol Infect. 2017;145:21008. DOIPubMedGoogle Scholar
  35. Lovelock  T, du Plessis  M, van der Westhuizen  C, Janson  JT, Lawrence  C, Parker  A, et al. Non-toxigenic Corynebacterium diphtheriae endocarditis: A cluster of five cases. S Afr J Infect Dis. 2024;39:539. DOIPubMedGoogle Scholar
  36. Will  RC, Ramamurthy  T, Sharma  NC, Veeraraghavan  B, Sangal  L, Haldar  P, et al. Spatiotemporal persistence of multiple, diverse clades and toxins of Corynebacterium diphtheriae. Nat Commun. 2021;12:1500. DOIPubMedGoogle Scholar
  37. Adegboye  OA, Alele  FO, Pak  A, Castellanos  ME, Abdullahi  MAS, Okeke  MI, et al. A resurgence and re-emergence of diphtheria in Nigeria, 2023. Ther Adv Infect Dis. 2023;10:20499361231161936. DOIPubMedGoogle Scholar
  38. Al-Dar  AA, Al-Qassimi  M, Ezzadeen  FH, Qassime  M, Al Murtadha  AM, Ghaleb  Y. Diphtheria resurgence in Sada’a-Yemen, 2017-2020. BMC Infect Dis. 2022;22:46. DOIPubMedGoogle Scholar
  39. Clarke  KEN, MacNeil  A, Hadler  S, Scott  C, Tiwari  TSP, Cherian  T. Global epidemiology of diphtheria, 2000–2017. Emerg Infect Dis. 2019;25:183442. DOIPubMedGoogle Scholar
  40. Republic of South Africa Department of Health. Expanded programme on immunisation (EPI) national coverage survey report, 2020 [cited 2024 Mar 6]. https://www.health.gov.za/wp-content/uploads/2022/03/National-EPI-Coverage-Survey_Final-full-report-Dec-2020.pdf
  41. Shaw  D, Abad  R, Amin-Chowdhury  Z, Bautista  A, Bennett  D, Broughton  K, et al. Trends in invasive bacterial diseases during the first 2 years of the COVID-19 pandemic: analyses of prospective surveillance data from 30 countries and territories in the IRIS Consortium. Lancet Digit Health. 2023;5:e58293. DOIPubMedGoogle Scholar
  42. Gubler  J, Huber-Schneider  C, Gruner  E, Altwegg  M. An outbreak of nontoxigenic Corynebacterium diphtheriae infection: single bacterial clone causing invasive infection among Swiss drug users. Clin Infect Dis. 1998;27:12958. DOIPubMedGoogle Scholar
  43. Karmarkar  EN, Fitzpatrick  T, Himmelfarb  ST, Chow  EJ, Smith  HZ, Lan  KF, et al. Cluster of nontoxigenic Corynebacterium diphtheriae infective endocarditis and rising background C. diphtheriae cases—Seattle, Washington, 2020–2023. Clin Infect Dis. 2024;78:121421. DOIPubMedGoogle Scholar
  44. Wołkowicz  T, Zacharczuk  K, Zasada  AA. Genomic analysis of Corynebacterium diphtheriae strains isolated in the years 2007–2022 with a report on the identification of the first non-toxigenic tox gene-bearing strain in Poland. Int J Mol Sci. 2023;24:4612. DOIPubMedGoogle Scholar
  45. Arcari  G, Hennart  M, Badell  E, Brisse  S. Multidrug-resistant toxigenic Corynebacterium diphtheriae sublineage 453 with two novel resistance genomic islands. Microb Genom. 2023;9:mgen000923. DOIPubMedGoogle Scholar
  46. Xiaoli  L, Peng  Y, Williams  MM, Lawrence  M, Cassiday  PK, Aneke  JS, et al. Genomic characterization of cocirculating Corynebacterium diphtheriae and non-diphtheritic Corynebacterium species among forcibly displaced Myanmar nationals, 2017-2019. Microb Genom. 2023;9:001085. DOIPubMedGoogle Scholar
  47. McLeod  JW. The types mitis, intermedius and gravis of Corynebacterium diphtheriae: a review of observations during the past ten years. Bacteriol Rev. 1943;7:141. DOIPubMedGoogle Scholar
  48. Sangal  V, Burkovski  A, Hunt  AC, Edwards  B, Blom  J, Hoskisson  PA. A lack of genetic basis for biovar differentiation in clinically important Corynebacterium diphtheriae from whole genome sequencing. Infect Genet Evol. 2014;21:547. DOIPubMedGoogle Scholar
  49. Santos  AS, Ramos  RT, Silva  A, Hirata  R Jr, Mattos-Guaraldi  AL, Meyer  R, et al. Searching whole genome sequences for biochemical identification features of emerging and reemerging pathogenic Corynebacterium species. Funct Integr Genomics. 2018;18:593610. DOIPubMedGoogle Scholar
  50. Ott  L, Möller  J, Burkovski  A. Interactions between the re-emerging pathogen Corynebacterium diphtheriae and host cells. Int J Mol Sci. 2022;23:3298. DOIPubMedGoogle Scholar

Main Article

Page created: January 15, 2025
Page updated: March 07, 2025
Page reviewed: March 07, 2025
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.
file_external