Volume 31, Number 3—March 2025
Synopsis
Corynebacterium diphtheriae Infections, South Africa, 2015–2023
Table 2
Clinical characteristics of Corynebacterium diphtheriae isolates, South Africa, 2015–2023*
Clinical category | No. isolates/total (%) | Sequence type/sublineage† |
---|---|---|
Total no. isolates |
84 |
NA |
Respiratory diphtheria | 27/84 (32) | NA |
Toxin positive | 26/27 (96) | ST378/SL265, n = 20; ST905/SL393, n = 1; ST906/SL394, n = 5 |
Toxin negative‡ |
1/27 (4) |
ST395/SL31, n = 1 |
Endocarditis | 14/84 (17) | NA |
Toxin positive | 0 | NA |
Toxin negative |
14/14 (100) |
ST391/SL52, n = 1; ST395/SL31, n = 2; ST743/SL31, n = 1; ST885/SL31, n = 8; ST887/SL31, n = 1; ST924/SL396, n = 1 |
Cutaneous diphtheria | 22/84 (26) | NA |
Toxin positive | 2/22 (9) | ST378/SL265, n = 2 |
Toxin negative |
20/22 (91) |
ST395/SL31, n = 5; ST608/SL259, n = 2§; ST885/SL31, n = 2; ST886/SL389, n = 3; ST888/SL31, n = 2; ST890/SL390, n = 1; ST891/SL391, n = 2; ST894/SL392, n = 1; ST896/SL31, n = 1; ST964/SL397, n = 1 |
Nonspecific respiratory illness | 5/84 (6) | NA |
Toxin positive | 0 | NA |
Toxin negative |
5/5 (100) |
ST395/SL31, n = 1; ST886/SL389, n = 1; ST888/SL31, n = 1; ST904/SL31, n = 2 |
Asymptomatic carrier¶ | 16/84 (19) | NA |
Toxin positive | 14/16 (88) | ST378/SL265, n = 7; ST906/SL394, n = 7 |
Toxin negative | 2/16 (13) | ST395/SL31, n = 1; ST885/SL31, n = 1 |
*Total number of isolates was 84 from 83 patients. NA, not applicable; SL, sublineage; ST, sequence type. †Sublineage identified by using core genome multilocus sequence typing (26). ‡One patient with respiratory diphtheria harbored toxigenic ST378 and nontoxigenic ST395 in their throat. §Sublineage not assigned for 1 isolate. ¶Contacts of symptomatic patients (did not develop respiratory symptoms).
References
- World Health Organization. Diphtheria outbreaks: comprehensive guidance for the public health preparedness and response in the WHO African Region. 2024 [cited 2024 Mar 6]. https://iris.who.int/handle/10665/376838
- Agrawal R, Murmu J, Kanungo S, Pati S. “Nigeria on alert: Diphtheria outbreaks require urgent action” - A critical look at the current situation and potential solutions. New Microbes New Infect. 2023;52:
101100 . DOIPubMedGoogle Scholar - Finger F, Funk S, White K, Siddiqui MR, Edmunds WJ, Kucharski AJ. Real-time analysis of the diphtheria outbreak in forcibly displaced Myanmar nationals in Bangladesh. BMC Med. 2019;17:58. DOIPubMedGoogle Scholar
- Dangel A, Berger A, Konrad R, Bischoff H, Sing A. Geographically diverse clusters of nontoxigenic Corynebacterium diphtheriae infection, Germany, 2016–2017. Emerg Infect Dis. 2018;24:1239–45. DOIPubMedGoogle Scholar
- Hoefer A, Pampaka D, Herrera-León S, Peiró S, Varona S, López-Perea N, et al. Molecular and epidemiological characterization of toxigenic and nontoxigenic Corynebacterium diphtheriae, Corynebacterium belfantii, Corynebacterium rouxii, and Corynebacterium ulcerans isolates identified in Spain from 2014 to 2019. J Clin Microbiol. 2021;59:e02410–20. DOIPubMedGoogle Scholar
- Gower CM, Scobie A, Fry NK, Litt DJ, Cameron JC, Chand MA, et al. The changing epidemiology of diphtheria in the United Kingdom, 2009 to 2017. Euro Surveill. 2020;25:
1900462 . DOIPubMedGoogle Scholar - Gao H, Lau EHY, Cowling BJ. Waning immunity after receipt of pertussis, diphtheria, tetanus, and polio-related vaccines: a systematic review and meta-analysis. J Infect Dis. 2022;225:557–66. DOIPubMedGoogle Scholar
- Anderson RM. The concept of herd immunity and the design of community-based immunization programmes. Vaccine. 1992;10:928–35. DOIPubMedGoogle Scholar
- Truelove SA, Keegan LT, Moss WJ, Chaisson LH, Macher E, Azman AS, et al. Clinical and epidemiological aspects of diphtheria: a systematic review and pooled analysis. Clin Infect Dis. 2020;71:89–97. DOIPubMedGoogle Scholar
- Holmes RK. Biology and molecular epidemiology of diphtheria toxin and the tox gene. J Infect Dis. 2000;181(Suppl 1):S156–67. DOIPubMedGoogle Scholar
- Zakikhany K, Neal S, Efstratiou A. Emergence and molecular characterisation of non-toxigenic tox gene-bearing Corynebacterium diphtheriae biovar mitis in the United Kingdom, 2003-2012. Euro Surveill. 2014;19:20819. DOIPubMedGoogle Scholar
- Billard-Pomares T, Rouyer C, Walewski V, Badell-Ocando E, Dumas M, Zumelzu C, et al. Diagnosis in France of a non-toxigenic tox gene–bearing strain of Corynebacterium diphtheriae in a young male back from Senegal. Open Forum Infect Dis. 2017;4:
ofw271 . DOIPubMedGoogle Scholar - Clinton LK, Bankowski MJ, Shimasaki T, Sae-Ow W, Whelen AC, O’Connor N, et al. Culture-negative prosthetic valve endocarditis with concomitant septicemia due to a nontoxigenic Corynebacterium diphtheriae biotype gravis isolate in a patient with multiple risk factors. J Clin Microbiol. 2013;51:3900–2. DOIPubMedGoogle Scholar
- Wojewoda CM, Koval CE, Wilson DA, Chakos MH, Harrington SM. Bloodstream infection caused by nontoxigenic Corynebacterium diphtheriae in an immunocompromised host in the United States. J Clin Microbiol. 2012;50:2170–2. DOIPubMedGoogle Scholar
- Belsey MA, LeBlanc DR. Skin infections and the epidemiology of diphtheria: acquisition and persistence of C diphtheriae infections. Am J Epidemiol. 1975;102:179–84. DOIPubMedGoogle Scholar
- Forde BM, Henderson A, Playford EG, Looke D, Henderson BC, Watson C, et al. Fatal respiratory diphtheria caused by ß-lactam–resistant Corynebacterium diphtheriae. Clin Infect Dis. 2021;73:e4531–8. DOIPubMedGoogle Scholar
- Hennart M, Panunzi LG, Rodrigues C, Gaday Q, Baines SL, Barros-Pinkelnig M, et al. Population genomics and antimicrobial resistance in Corynebacterium diphtheriae. Genome Med. 2020;12:107. DOIPubMedGoogle Scholar
- Brémont S, Passet V, Hennart M, Fonteneau L, Toubiana J, Badell E, et al. Multidrug-resistant Corynebacterium diphtheriae in people with travel history from West Africa to France, March to September 2023. Euro Surveill. 2023;28:
2300615 . DOIPubMedGoogle Scholar - Konrad R, Berger A, Huber I, Boschert V, Hörmansdorfer S, Busch U, et al. Matrix-assisted laser desorption/ionisation time-of-flight (MALDI-TOF) mass spectrometry as a tool for rapid diagnosis of potentially toxigenic Corynebacterium species in the laboratory management of diphtheria-associated bacteria. Euro Surveill. 2010;15:19699. DOIPubMedGoogle Scholar
- Williams MM, Waller JL, Aneke JS, Weigand MR, Diaz MH, Bowden KE, et al. Detection and characterization of diphtheria toxin gene-bearing Corynebacterium species through a new real-time PCR assay. J Clin Microbiol. 2020;58:e00639–20. DOIPubMedGoogle Scholar
- Engler KH, Glushkevich T, Mazurova IK, George RC, Efstratiou A. A modified Elek test for detection of toxigenic corynebacteria in the diagnostic laboratory. J Clin Microbiol. 1997;35:495–8. DOIPubMedGoogle Scholar
- Clinical and Laboratory Standards Institute. Methods for antimicrobial dilution and disk susceptibility testing of infrequently isolated or fastidious bacteria; third edition (M45). Wayne (PA): The Institute; 2015.
- du Plessis M, Wolter N, Allam M, de Gouveia L, Moosa F, Ntshoe G, et al. Molecular characterization of Corynebacterium diphtheriae outbreak isolates, South Africa, March–June 2015. Emerg Infect Dis. 2017;23:1308–15. DOIPubMedGoogle Scholar
- Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol. 2012;19:455–77. DOIPubMedGoogle Scholar
- Manni M, Berkeley MR, Seppey M, Zdobnov EM. BUSCO: assessing genomic data quality and beyond. Curr Protoc. 2021;1:
e323 . DOIPubMedGoogle Scholar - Guglielmini J, Hennart M, Badell E, Toubiana J, Criscuolo A, Brisse S. Genomic epidemiology and strain taxonomy of Corynebacterium diphtheriae. J Clin Microbiol. 2021;59:
e0158121 . DOIPubMedGoogle Scholar - Hennart M, Crestani C, Bridel S, Armatys N, Brémont S, Carmi-Leroy A, et al. A global Corynebacterium diphtheriae genomic framework sheds light on current diphtheria reemergence. Peer Community J. 2023;3:
e76 . DOIGoogle Scholar - Arango-Argoty G, Garner E, Pruden A, Heath LS, Vikesland P, Zhang L. DeepARG: a deep learning approach for predicting antibiotic resistance genes from metagenomic data. Microbiome. 2018;6:23. DOIPubMedGoogle Scholar
- Shen W, Le S, Li Y, Hu F. SeqKit: a cross-platform and ultrafast toolkit for FASTA/Q file manipulation. PLoS One. 2016;11:
e0163962 . DOIPubMedGoogle Scholar - Criscuolo A. A fast alignment-free bioinformatics procedure to infer accurate distance-based phylogenetic trees from genome assemblies. Res Ideas Outcomes. 2019;5:
e36178 . DOIGoogle Scholar - Didelot X, Falush D. Inference of bacterial microevolution using multilocus sequence data. Genetics. 2007;175:1251–66. DOIPubMedGoogle Scholar
- Dazas M, Badell E, Carmi-Leroy A, Criscuolo A, Brisse S. Taxonomic status of Corynebacterium diphtheriae biovar Belfanti and proposal of Corynebacterium belfantii sp. nov. Int J Syst Evol Microbiol. 2018;68:3826–31. DOIPubMedGoogle Scholar
- Oren A, Garrity GM. Notification that new names of prokaryotes, new combinations, and new taxonomic opinions have appeared in volume 68, part 12, of the IJSEM. Int J Syst Evol Microbiol. 2019;69:600–1. DOIPubMedGoogle Scholar
- Mahomed S, Archary M, Mutevedzi P, Mahabeer Y, Govender P, Ntshoe G, et al. An isolated outbreak of diphtheria in South Africa, 2015. Epidemiol Infect. 2017;145:2100–8. DOIPubMedGoogle Scholar
- Lovelock T, du Plessis M, van der Westhuizen C, Janson JT, Lawrence C, Parker A, et al. Non-toxigenic Corynebacterium diphtheriae endocarditis: A cluster of five cases. S Afr J Infect Dis. 2024;39:539. DOIPubMedGoogle Scholar
- Will RC, Ramamurthy T, Sharma NC, Veeraraghavan B, Sangal L, Haldar P, et al. Spatiotemporal persistence of multiple, diverse clades and toxins of Corynebacterium diphtheriae. Nat Commun. 2021;12:1500. DOIPubMedGoogle Scholar
- Adegboye OA, Alele FO, Pak A, Castellanos ME, Abdullahi MAS, Okeke MI, et al. A resurgence and re-emergence of diphtheria in Nigeria, 2023. Ther Adv Infect Dis. 2023;10:
20499361231161936 . DOIPubMedGoogle Scholar - Al-Dar AA, Al-Qassimi M, Ezzadeen FH, Qassime M, Al Murtadha AM, Ghaleb Y. Diphtheria resurgence in Sada’a-Yemen, 2017-2020. BMC Infect Dis. 2022;22:46. DOIPubMedGoogle Scholar
- Clarke KEN, MacNeil A, Hadler S, Scott C, Tiwari TSP, Cherian T. Global epidemiology of diphtheria, 2000–2017. Emerg Infect Dis. 2019;25:1834–42. DOIPubMedGoogle Scholar
- Republic of South Africa Department of Health. Expanded programme on immunisation (EPI) national coverage survey report, 2020 [cited 2024 Mar 6]. https://www.health.gov.za/wp-content/uploads/2022/03/National-EPI-Coverage-Survey_Final-full-report-Dec-2020.pdf
- Shaw D, Abad R, Amin-Chowdhury Z, Bautista A, Bennett D, Broughton K, et al. Trends in invasive bacterial diseases during the first 2 years of the COVID-19 pandemic: analyses of prospective surveillance data from 30 countries and territories in the IRIS Consortium. Lancet Digit Health. 2023;5:e582–93. DOIPubMedGoogle Scholar
- Gubler J, Huber-Schneider C, Gruner E, Altwegg M. An outbreak of nontoxigenic Corynebacterium diphtheriae infection: single bacterial clone causing invasive infection among Swiss drug users. Clin Infect Dis. 1998;27:1295–8. DOIPubMedGoogle Scholar
- Karmarkar EN, Fitzpatrick T, Himmelfarb ST, Chow EJ, Smith HZ, Lan KF, et al. Cluster of nontoxigenic Corynebacterium diphtheriae infective endocarditis and rising background C. diphtheriae cases—Seattle, Washington, 2020–2023. Clin Infect Dis. 2024;78:1214–21. DOIPubMedGoogle Scholar
- Wołkowicz T, Zacharczuk K, Zasada AA. Genomic analysis of Corynebacterium diphtheriae strains isolated in the years 2007–2022 with a report on the identification of the first non-toxigenic tox gene-bearing strain in Poland. Int J Mol Sci. 2023;24:4612. DOIPubMedGoogle Scholar
- Arcari G, Hennart M, Badell E, Brisse S. Multidrug-resistant toxigenic Corynebacterium diphtheriae sublineage 453 with two novel resistance genomic islands. Microb Genom. 2023;9:
mgen000923 . DOIPubMedGoogle Scholar - Xiaoli L, Peng Y, Williams MM, Lawrence M, Cassiday PK, Aneke JS, et al. Genomic characterization of cocirculating Corynebacterium diphtheriae and non-diphtheritic Corynebacterium species among forcibly displaced Myanmar nationals, 2017-2019. Microb Genom. 2023;9:
001085 . DOIPubMedGoogle Scholar - McLeod JW. The types mitis, intermedius and gravis of Corynebacterium diphtheriae: a review of observations during the past ten years. Bacteriol Rev. 1943;7:1–41. DOIPubMedGoogle Scholar
- Sangal V, Burkovski A, Hunt AC, Edwards B, Blom J, Hoskisson PA. A lack of genetic basis for biovar differentiation in clinically important Corynebacterium diphtheriae from whole genome sequencing. Infect Genet Evol. 2014;21:54–7. DOIPubMedGoogle Scholar
- Santos AS, Ramos RT, Silva A, Hirata R Jr, Mattos-Guaraldi AL, Meyer R, et al. Searching whole genome sequences for biochemical identification features of emerging and reemerging pathogenic Corynebacterium species. Funct Integr Genomics. 2018;18:593–610. DOIPubMedGoogle Scholar
- Ott L, Möller J, Burkovski A. Interactions between the re-emerging pathogen Corynebacterium diphtheriae and host cells. Int J Mol Sci. 2022;23:3298. DOIPubMedGoogle Scholar
Page created: January 15, 2025
Page updated: March 07, 2025
Page reviewed: March 07, 2025
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.