Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link

Disclaimer: Early release articles are not considered as final versions. Any changes will be reflected in the online version in the month the article is officially released.

Volume 31, Number 5—May 2025
Research

Exponential Clonal Expansion of 5-Fluorocytosine–Resistant Candida tropicalis and New Insights into Underlying Molecular Mechanisms

Nissrine Abou-Chakra, Karen Marie Thyssen Astvad, Jan Martinussen, Amalie Sofie Eilsø Munksgaard, and Maiken Cavling ArendrupComments to Author 
Author affiliation: Author affiliations: Statens Serum Institut, Copenhagen, Denmark (N. Abou-Chakra, K.M.T. Astvad, A.S.E. Munksgaard, M.C. Arendrup); Technical University of Denmark, Kgs Lyngby, Denmark (J. Martinussen); University of Copenhagen, Copenhagen (A.S.E. Munksgaard, M.C. Arendrup); Rigshospitalet, Copenhagen (M.C. Arendrup)

Main Article

Figure 2

FCY2 sequence encoding the purine-cytosine permease derived from contig 14 of the Candida tropicalis strain ATCC 750 genome assembly, published on the ATCC Genome Portal in 2020. The coding sequence spans positions 2152980–2154500. The ORF is depicted at the top left of the figure; long red arrow illustrates the FCY2 forward primer designed by Desnos-Ollivier et al. (12), and the blue arrow indicating the ORF they used. The green arrow represents the tryptophan codon TGG, which is converted to stop codon TGA in the MYA 3404 genome assembly. CDS, coding sequence; ORF, open reading frame.

Figure 2. FCY2 sequence encoding the purine-cytosine permease derived from contig 14 of the Candida tropicalis strain ATCC 750 genome assembly, published on the ATCC Genome Portal in 2020. The coding sequence spans positions 2152980–2154500. The ORF is depicted at the top left of the figure; long red arrow illustrates the FCY2 forward primer designed by Desnos-Ollivier et al. (12), and the blue arrow indicating the ORF they used. The green arrow represents the tryptophan codon TGG, which is converted to stop codon TGA in the MYA 3404 genome assembly. CDS, coding sequence; ORF, open reading frame.

Main Article

References
  1. Spampinato  C, Leonardi  D. Candida infections, causes, targets, and resistance mechanisms: traditional and alternative antifungal agents. BioMed Res Int. 2013;2013:204237. DOIPubMedGoogle Scholar
  2. Pappas  PG, Lionakis  MS, Arendrup  MC, Ostrosky-Zeichner  L, Kullberg  BJ. Invasive candidiasis. Nat Rev Dis Primers. 2018;4:18026. DOIPubMedGoogle Scholar
  3. Risum  M, Astvad  K, Johansen  HK, Schønheyder  HC, Rosenvinge  F, Knudsen  JD, et al. Update 2016–2018 of the nationwide Danish fungaemia surveillance study: epidemiologic changes in a 15-year perspective. J Fungi (Basel). 2021;7:491. DOIPubMedGoogle Scholar
  4. Roilides  E, Farmaki  E, Evdoridou  J, Francesconi  A, Kasai  M, Filioti  J, et al. Candida tropicalis in a neonatal intensive care unit: epidemiologic and molecular analysis of an outbreak of infection with an uncommon neonatal pathogen. J Clin Microbiol. 2003;41:73541. DOIPubMedGoogle Scholar
  5. Spruijtenburg  B, De Carolis  E, Magri  C, Meis  JF, Sanguinetti  M, de Groot  T, et al. Genotyping of Candida tropicalis isolates uncovers nosocomial transmission of two lineages in Italian tertiary care hospital. J Hosp Infect. 2025;155:11522. DOIPubMedGoogle Scholar
  6. Wang  Q, Tang  D, Tang  K, Guo  J, Huang  Y, Li  C. Multilocus sequence typing reveals clonality of fluconazole-nonsusceptible Candida tropicalis: a study from Wuhan to the global. Front Microbiol. 2020;11:554249. DOIPubMedGoogle Scholar
  7. Sigera  LSM, Denning  DW. Flucytosine and its clinical usage. Ther Adv Infect Dis. 2023;10:20499361231161387. DOIPubMedGoogle Scholar
  8. Longley  DB, Harkin  DP, Johnston  PG. 5-fluorouracil: mechanisms of action and clinical strategies. Nat Rev Cancer. 2003;3:3308. DOIPubMedGoogle Scholar
  9. Zhang  N, Yin  Y, Xu  SJ, Chen  WS. 5-Fluorouracil: mechanisms of resistance and reversal strategies. Molecules. 2008;13:155169. DOIPubMedGoogle Scholar
  10. Law  D, Moore  CB, Joseph  LA, Keaney  MGL, Denning  DW. High incidence of antifungal drug resistance in Candida tropicalis. Int J Antimicrob Agents. 1996;7:2415. DOIPubMedGoogle Scholar
  11. Tortorano  AM, Rigoni  AL, Biraghi  E, Prigitano  A, Viviani  MA; FIMUA-ECMM Candidaemia Study Group. The European Confederation of Medical Mycology (ECMM) survey of candidaemia in Italy: antifungal susceptibility patterns of 261 non-albicans Candida isolates from blood. J Antimicrob Chemother. 2003;52:67982. DOIPubMedGoogle Scholar
  12. Desnos-Ollivier  M, Bretagne  S, Bernède  C, Robert  V, Raoux  D, Chachaty  E, et al.; Yeasts Group. Clonal population of flucytosine-resistant Candida tropicalis from blood cultures, Paris, France. Emerg Infect Dis. 2008;14:55765. DOIPubMedGoogle Scholar
  13. Arendrup  MC, Arikan-Akdagli  S, Jørgensen  KM, Barac  A, Steinmann  J, Toscano  C, et al. European candidaemia is characterised by notable differential epidemiology and susceptibility pattern: Results from the ECMM Candida III study. J Infect. 2023;87:42837. DOIPubMedGoogle Scholar
  14. European Committee for Antimicrobial Susceptibility Testing (EUCAST). Susceptibility testing of yeasts. version 7.4. October 2023 [cited 2025 Mar 13]. https://www.eucast.org/astoffungi/methodsinantifungalsusceptibilitytesting/susceptibility_testing_of_yeasts
  15. Turnidge  J, Kahlmeter  G, Kronvall  G. Statistical characterisation of bacterial wild-type MIC value distributions and the determination of epidemiological cut-off values. Clin Microbiol Infect. 2006;12:41825. DOIPubMedGoogle Scholar
  16. Wu  Y, Zhou  H-J, Che  J, Li  W-G, Bian  F-N, Yu  S-B, et al. Multilocus microsatellite markers for molecular typing of Candida tropicalis isolates. BMC Microbiol. 2014;14:245. DOIPubMedGoogle Scholar
  17. Guinea  J, Arendrup  MC, Cantón  R, Cantón  E, García-Rodríguez  J, Gómez  A, et al. Genotyping reveals high clonal diversity and widespread genotypes of Candida causing candidemia at distant geographical areas. Front Cell Infect Microbiol. 2020;10:166. DOIPubMedGoogle Scholar
  18. Chen  YN, Lo  HJ, Wu  CC, Ko  HC, Chang  TP, Yang  YL. Loss of heterozygosity of FCY2 leading to the development of flucytosine resistance in Candida tropicalis. Antimicrob Agents Chemother. 2011;55:250614. DOIPubMedGoogle Scholar
  19. Chevallier  MR, Jund  R, Lacroute  F. Characterization of cytosine permeation in Saccharomyces cerevisiae. J Bacteriol. 1975;122:62941. DOIPubMedGoogle Scholar
  20. Chan  KK, Wood  BMK, Fedorov  AA, Fedorov  EV, Imker  HJ, Amyes  TL, et al. Mechanism of the orotidine 5′-monophosphate decarboxylase-catalyzed reaction: evidence for substrate destabilization. Biochemistry. 2009;48:551831. DOIPubMedGoogle Scholar
  21. Nygaard  P, Saxild  HH. Nucleotide metabolism. In: Schaechter M, editor. Encyclopedia of microbiology. 3rd ed. Oxford: Academic Press; 2009. p. 296–307.
  22. Li  G, Li  D, Wang  T, He  S. Pyrimidine biosynthetic enzyme CAD: its function, regulation, and diagnostic potential. Int J Mol Sci. 2021;22:10253. DOIPubMedGoogle Scholar
  23. Xu  J. Is natural population of Candida tropicalis sexual, parasexual, and/or asexual? Front Cell Infect Microbiol. 2021;11:751676. DOIPubMedGoogle Scholar

Main Article

Page created: April 14, 2025
Page updated: April 22, 2025
Page reviewed: April 22, 2025
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.
file_external