Volume 5, Number 2—April 1999
Synopsis
Bacterial Toxins: Friends or Foes?
Figure 2
References
- Roux E, Yersin A. Contribution a l'etude de la diphtherie. Ann Inst Pasteur (Paris). 1888;2:629–61.
- Schlessinger D, Schaechter M. Bacterial toxins. In: Schaechter M, Medoff G, Eisenstein BI, editors. Mechanisms of microbial disease. 2nd ed. Baltimore: Williams and Wilkins; 1993. p. 162-75.
- Songer JG. Bacterial phospholipases and their role in virulence. Trends Microbiol. 1997;5:156–61. DOIPubMedGoogle Scholar
- Lottenberg R, Minning-Wenz D, Boyle MD. Capturing host plasmin(ogen): a common mechanism for invasive pathogens? Trends Microbiol. 1994;2:20–4. DOIPubMedGoogle Scholar
- Harrington DJ. Bacterial collagenases and collagen-degrading enzymes and their potential role in human disease. Infect Immun. 1996;64:1885–91.PubMedGoogle Scholar
- Bhakdi S, Tranum-Jensen J. Alpha-toxin of Staphylococcus aureus. Microbiol Rev. 1991;55:733–51.PubMedGoogle Scholar
- Tomita T, Kamio Y. Molecular biology of the pore-forming cytolysins from Staphylococcus aureus, a- and gamma-hemolysins and leukocidin. Biosci Biotechnol Biochem. 1997;61:565–72. DOIPubMedGoogle Scholar
- Bhakdi S, Bayley H, Valeva A, Walev I, Walker B, Weller U, Staphylococcal alpha-toxin, streptolysin-O and Escherichia coli hemolysin: prototypes of pore-forming bacterial cytolysins. Arch Microbiol. 1996;165:73–9. DOIPubMedGoogle Scholar
- Song L, Hobaugh MR, Shustak C, Cheley S, Bayley H, Gouaux JE. Structure of staphylococcal alpha-hemolysin, a heptameric transmembrane pore. Science. 1996;274:1859–66. DOIPubMedGoogle Scholar
- Lesieur C, Vecsey-Semjen B, Abrami L, Fivaz M, Gisou van der Goot F. Membrane insertion: the strategies of toxins. Mol Membr Biol. 1997;14:45–64. DOIPubMedGoogle Scholar
- Collier RJ. In: Moss J, Vaughan M, editors. ADP-ribosylating toxins and g proteins. Washington: American Society for Microbiology; 1990. p. 3-19.
- Wick MJ, Iglewski BH. In: Moss J, Vaughan M, editors. ADP-ribosylating toxins and g proteins. Washington: American Society for Microbiology; 1990. p. 31-43.
- Endo Y, Tsurugi K, Yutsudo T, Takeda Y, Ogasawara Y, Igarashi K. Site of action of a Vero toxin (VT2) from Escherichia coli O157:H7 and of Shiga toxin on eucaryotic ribosomes. Eur J Biochem. 1988;171:45–50. DOIPubMedGoogle Scholar
- Saxena SK, O'Brien AD, Ackerman EJ. Shiga toxin, Shiga-like toxin II variant, and ricin are all single-site RNA N-glycosidases of 28 S RNA when microinjected into Xenopus oocytes. J Biol Chem. 1989;264:596–601.PubMedGoogle Scholar
- Tesh VL, O'Brien AD. The pathogenic mechanisms of Shiga toxin and the Shiga-like toxins. Mol Microbiol. 1991;5:1817–22. DOIPubMedGoogle Scholar
- O'Brien AD, Tesh VL, Donohue-Rolfe A, Jackson MP, Olsnes S, Sandvig K, Shiga toxin: biochemistry, genetics, mode of action, and role in pathogenesis. In: Sansonetti PJ, editor. Pathogenesis of shigellosis. 180th ed. Berlin-Heidelberg: Springer-Verlag; 1992. p. 66-94.
- O'Brien AD, Kaper JB. Shiga toxin-producing Escherichia coli: yesterday, today, and tomorrow. In: Kaper JB, O'Brien AD, editors. Escherichia coli O157:H7 and other Shiga toxin-producing E. coli strains. Washington: American Society for Microbiology; 1998. p. 1-11.
- Melton-Celsa AR, O'Brien AD. Activation of Shiga-like toxins by mouse and human intestinal mucus correlates with virulence of enterohemorrhagic Escherichia coli O91:H21 isolates in orally infected, streptomycin-treated mice. Infect Immun. 1996;64:1569–76.PubMedGoogle Scholar
- Stein PE, Boodhoo A, Tyrell GT, Brunton J, Read RJ. Crystal structure of the cell-binding B oligomer of verotoxin-1 from E. coli. Nature. 1992;355:748–50. DOIPubMedGoogle Scholar
- Frasier ME, Chernaia MM, Kozlov YV, James MNG. Crystal structure of the holotoxin from Shigella dysenteriae at 2.5 Å resolution. Nat Struct Biol. 1994;1:59–64. DOIPubMedGoogle Scholar
- Sixma TK, Kalk KH, van Zanten BA, Dauter Z, Kingma J, Witholt B, Redefined structure of Escherichia coli heat-labile enterotoxin, a close relative of cholera toxin. J Mol Biol. 1993;230:890–918. DOIPubMedGoogle Scholar
- Stein PE, Boodhoo A, Armstrong GD, Cockle SA, Klein MH, Read RJ. The crystal structure of pertussis toxin. Structure. 1994;2:45–57. DOIPubMedGoogle Scholar
- Suh J-K, Hovde CJ, Robertus JD. Shiga toxin attacks bacterial ribosomes as effectively as eukaryotic ribosomes. Biochemistry. 1998;37:9394–8. DOIPubMedGoogle Scholar
- Centers for Disease Control and Prevention. Addressing emerging infectious disease threats: a prevention strategy for the United States. MMWR Morb Mortal Wkly Rep. 1994;43:1–18.
- O'Brien AD, Lively TA, Chen M, Rothman SW, Formal SB. Escherichia coli O157:H7 strains associated with hemorrhagic colitis in the United States produce a Shigella dysenteriae 1 (Shiga) like cytotoxin. Lancet. 1983;i:702. DOIGoogle Scholar
- Centers for Disease Control. Isolation of E. coli O157:H7 from sporadic cases of hemorrhagic colitisUnited States. MMWR Morb Mortal Wkly Rep. 1982;31:580–5.PubMedGoogle Scholar
- Boyce TG, Swerdlow DL, Griffin PM. Escherichia coli O157:H7 and the hemolytic-uremic syndrome. N Engl J Med. 1995;333:364–8. DOIPubMedGoogle Scholar
- Aktories K. Rho proteins: targets for bacterial toxins. Trends Microbiol. 1997;5:282–8. DOIPubMedGoogle Scholar
- Oswald E, Sugai M, Labigne A, Wu HC, Fiorentini C, Boquet P, Cytotoxic necrotizing factor type 2 produced by virulent Escherichia coli modifies the small GTP-binding proteins Rho involved in assembly of actin stress fibers. Proc Natl Acad Sci U S A. 1994;91:3814–8. DOIPubMedGoogle Scholar
- Schmidt G, Sehr P, Wilm M, Selzer J, Mann M, Aktories K. Gln63 of Rho is deamidated by Escherichia coli cytotoxic necrotizing factor-1. Nature. 1997;387:725–9. DOIPubMedGoogle Scholar
- Flatau G, Lemichez E, Gauthier M, Chardin P, Paris S, Fiorentini C, Toxin-induced activation of the G protein p21 Rho by deamidation of glutamine. Nature. 1997;387:729–33. DOIPubMedGoogle Scholar
- Horiguchi Y, Inoue N, Masuda M, Kashimoto T, Katahira J, Sugimoto N, Bordetella bronchiseptica dermonecrotizing toxin induces reorganization of actin stress fibers through deamidation of Gln-63 of the GTP-binding protein Rho. Proc Natl Acad Sci U S A. 1997;94:11623–6. DOIPubMedGoogle Scholar
- Falbo V, Pace T, Picci L, Pizzi E, Caprioli A. Isolation and nucleotide sequence of the gene encoding cytotoxic necrotizing factor 1 of Escherichia coli. Infect Immun. 1993;61:4909–14.PubMedGoogle Scholar
- Blum G, Falbo V, Caprioli A, Hacker J. Gene clusters encoding the cytotoxic necrotizing factor type 1, Prs-fimbriae and -hemolysin form the pathogenicity island II of the uropathogenic Escherichia coli strain J96. FEMS Microbiol Lett. 1995;126:189–96.PubMedGoogle Scholar
- Lemichez E, Flatau G, Bruzzone M, Boquet P, Gauthier M. Molecular localization of the Escherichia coli cytotoxic necrotizing factor CNF1 cell-binding and catalytic domains. Mol Microbiol. 1997;24:1061–70. DOIPubMedGoogle Scholar
- DeRycke J, Gonzalez EA, Blanco J, Oswald E, Blanco M, Boivin R. Evidence for two types of cytotoxic necrotizing factor in human and animal clinical isolates of Escherichia coli. J Clin Microbiol. 1990;28:694–9.PubMedGoogle Scholar
- Andreu A, Stapleton AE, Fennell C, Lockman HA, Xercavins M, Fernandez F, Urovirulence determinants in Escherichia coli strains causing prostatitis. J Infect Dis. 1997;176:464–9. DOIPubMedGoogle Scholar
- Nair GB, Takeda Y. The heat-stable enterotoxins. Microb Pathog. 1998;24:123–31. DOIPubMedGoogle Scholar
- So M, McCarthy BJ. Nucleotide sequence of transposon Tn1681 encoding a heat-stable toxin (ST) and its identification in enterotoxigenic Escherichia coli strains. Proc Natl Acad Sci U S A. 1980;77:4011–5. DOIPubMedGoogle Scholar
- So M, Boyer HW, Betlach M, Falkow S. Molecular cloning of an Escherichia coli plasmid determinant that encodes for the production of heat-stable enterotoxin. J Bacteriol. 1976;128:463–72.PubMedGoogle Scholar
- Giannella RA. Escherichia coli heat-stable enterotoxins, guanylins, and their receptors: what are they and what do they do? J Lab Clin Med. 1995;125:173–81.PubMedGoogle Scholar
- Singh BR, Li B, Read D. Botulinum versus tetanus neurotoxins: why is botulinum neurotoxin but not tetanus neurotoxin a food poison? Toxicon. 1995;33:1541–7. DOIPubMedGoogle Scholar
- Jahn R, Hanson PI, Otto H, Ahnert-Hilger G. Botulinum and tetanus neurotoxins: emerging tools for the study of membrane fusion. Cold Spring Harb Symp Quant Biol. 1995;60:329–35.PubMedGoogle Scholar
- Henderson I, Davis T, Elmore M, Minton NP. The genetic basis of toxin production in Clostridium botulinum and Clostridium tetani. In: Rood JI, McClane BA, Songer JG, Titball RW, editors. The clostridia: molecular biology and pathogenesis. San Diego: Academic Press; 1997. p. 261-94.
- Schiavo G, Montecucco C. The structure and mode of action of botulinum and tetanus toxins. In: Rood JI, McClane BA, Songer JG, Titball RW, editors. The clostridia: molecular biology and pathogenesis. San Diego: Academic Press; 1997. p. 295-322.
- Kessler KR, Benecke R. Botulinum toxin: from poison to remedy. Neurotoxicology. 1997;18:761–70.PubMedGoogle Scholar
- Halpern JL, Neale EA. Neurospecific binding, internalization and retrograde axonal transport. Curr Top Microbiol Immunol. 1995;195:221–41.PubMedGoogle Scholar
- Arnon SS. Human tetanus and human botulism. In: Rood JI, McClane BA, Songer JG, Titball RW, editors. The clostridia: molecular biology and pathogenesis. San Diego: Academic Press; 1997. p. 95-115.
- Rago JV, Schlievert PM. Mechanisms of pathogenesis of staphylococcal and streptococcal superantigens. Curr Top Microbiol Immunol. 1998;225:81–97.PubMedGoogle Scholar
- Lee PK, Schlievert PM. Molecular genetics of pyrogenic exotoxin "superantigens" of Group A streptococci and staphylococcus. Curr Top Microbiol Immunol. 1991;174:1–19.PubMedGoogle Scholar
- Bohach GA, Stauffacher CV, Ohlendorf DH, Chi YI, Vath GM, Schlievert PM. The staphylococcal and streptococcal pyrogenic toxin family. In: Singh BR, Tu AT, editors. Natural Toxins II. New York: Plenum Press; 1996. p. 131-54.
- Papageorgiou AC, Acharya KR. Superantigens as immunomodulators: recent structural insights. Structure. 1997;5:991–6. DOIPubMedGoogle Scholar
- Prasad GS, Radhakrishnan R, Mitchell DT, Earhart CA, Dinges MM, Cook WJ, Refined structures of three crystal forms of toxic shock syndrome toxin-1 and of a tetramutant with reduced activity. Protein Sci. 1997;6:1220–7. DOIPubMedGoogle Scholar
- Betley MJ, Borst DW, Regassa LB. Staphylococcal enterotoxins, toxic shock syndrome toxin and streptococcal pyrogenic exotoxins: a comparative study of their molecular biology. Chem Immunol. 1992;55:1–35.PubMedGoogle Scholar
- Stevens DL. Superantigens: their role in infectious diseases. Immunol Invest. 1997;26:275–81. DOIPubMedGoogle Scholar
- Harnett MM. Analysis of G-proteins regulating signal transduction pathways. Methods Mol Biol. 1994;27:199–211.PubMedGoogle Scholar
- Bokoch GM, Katada T, Northup JK, Hewlett EL, Gilman AG. Identification of the predominant substrate for ADP-ribosylation by islet activating protein. J Biol Chem. 1983;258:2072–5.PubMedGoogle Scholar
- Neer EJ. Heterotrimeric G proteins: organizers of transmembrane signals. Cell. 1995;80:249–57. DOIPubMedGoogle Scholar
- Snider DP. The mucosal adjuvant activities of ADP-ribosylating bacterial enterotoxins. Crit Rev Immunol. 1995;15:317–48.PubMedGoogle Scholar
- Holmgren J, Lycke N, Czerkinsky C. Cholera toxin and cholera-B subunit as oral mucosal adjuvant and antigen vector systems. Vaccine. 1993;11:1179–84. DOIPubMedGoogle Scholar
- Pastan I. Targeted therapy of cancer with recombinant immunotoxins. Biochim Biophys Acta. 1997;1333:C1–6.PubMedGoogle Scholar
- Ghetie MA, Ghetie V, Vitetta ES. Immunotoxins for the treatment of B-cell lymphomas. Mol Med. 1997;3:420–7.PubMedGoogle Scholar
- Winkler U, Barth S, Schnell R, Diehl V, Engert A. The emerging role of immunotoxins in leukemia and lymphoma. Ann Oncol. 1997;8:139–46. DOIPubMedGoogle Scholar
- Murray LJ, Habeshaw JA, Wiels J, Greaves MF. Expression of Burkitt lymphoma-associated antigen (defined by the monoclonal antibody 38.13) on both normal and malignant germinal-centre B cells. Int J Cancer. 1985;36:561–5. DOIPubMedGoogle Scholar
- Taga S, Mangeney M, Tursz T, Wiels J. Differential regulation of glycosphingolipid biosynthesis in phenotypically distinct Burkitt's lymphoma cell lines. Int J Cancer. 1995;61:261–7. DOIPubMedGoogle Scholar
- LaCasse EC, Saleh MT, Patterson B, Minden MD, Gariepy J. Shiga-like toxin purges human lymphoma from bone marrow of severe combined immunodeficient mice. Blood. 1996;88:1551–67.PubMedGoogle Scholar
- Wheeler AH. Therapeutic uses of botulinum toxin. Am Fam Physician. 1997;55:541–8.PubMedGoogle Scholar
- Averbuch-Heller L, Leigh RJ. Medical treatments for abnormal eye movements: pharmacological, optical and immunological strategies. Aust N Z J Ophthalmol. 1997;25:7–13.PubMedGoogle Scholar
- Carter SR, Seiff SR. Cosmetic botulinum toxin injections. Int Ophthalmol Clin. 1997;37:69–79. DOIPubMedGoogle Scholar
- Maseri A, Andreotti F. Targeting new thrombolytic regimens at specific patient groups: implications for research and cost-containment. Eur Heart J. 1997;18:F28–35.PubMedGoogle Scholar
- Levine SR. Thrombolytic therapy for stroke: the new paradigm. Hosp Pract (Off Ed). 1997;32:57–73.
- Cherry JD. Comparative efficacy of acellular pertussis vaccines: an analysis of recent trials. Pediatr Infect Dis J. 1997;16:S90–6. DOIPubMedGoogle Scholar
- National Institutes of Health. The Jordan report: accelerated development of vaccines. 1998.
- Kraulis PJ. MOLSCRIPT: A program to produce both detailed and schematic plots of protein structures. J Appl Cryst. 1991;24:946–50. DOIGoogle Scholar
Page created: December 10, 2010
Page updated: December 10, 2010
Page reviewed: December 10, 2010
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.