Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 5, Number 2—April 1999

Bacterial Toxins: Friends or Foes?

Clare K. Schmitt, Karen C. Meysick, and Alison D. O'BrienComments to Author 
Author affiliations: Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA

Main Article

Figure 2

Ribbon crystal structures of Shigella dysenteriae Shiga toxin (20), Escherichia coli heat-labile toxin I (LT-I) (21), and pertussis toxin (22). The Shiga toxin figure was contributed by Marie Frasier. The LT-I and pertussis figures were contributed by Ethan Merritt. The figures were drawn in MOLSCRIPT (75).

Figure 2. Ribbon crystal structures of Shigella dysenteriae Shiga toxin (20), Escherichia coli heat-labile toxin I (LT-I) (21), and pertussis toxin (22). The Shiga toxin figure was contributed by Marie Frasier. The LT-I and pertussis figures were contributed by Ethan Merritt. The figures were drawn in MOLSCRIPT (75).

Main Article

  1. Roux  E, Yersin  A. Contribution a l'etude de la diphtherie. Ann Inst Pasteur (Paris). 1888;2:62961.
  2. Schlessinger  D, Schaechter  M. Bacterial toxins. In: Schaechter M, Medoff G, Eisenstein BI, editors. Mechanisms of microbial disease. 2nd ed. Baltimore: Williams and Wilkins; 1993. p. 162-75.
  3. Songer  JG. Bacterial phospholipases and their role in virulence. Trends Microbiol. 1997;5:15661. DOIPubMedGoogle Scholar
  4. Lottenberg  R, Minning-Wenz  D, Boyle  MD. Capturing host plasmin(ogen): a common mechanism for invasive pathogens? Trends Microbiol. 1994;2:204. DOIPubMedGoogle Scholar
  5. Harrington  DJ. Bacterial collagenases and collagen-degrading enzymes and their potential role in human disease. Infect Immun. 1996;64:188591.PubMedGoogle Scholar
  6. Bhakdi  S, Tranum-Jensen  J. Alpha-toxin of Staphylococcus aureus. Microbiol Rev. 1991;55:73351.PubMedGoogle Scholar
  7. Tomita  T, Kamio  Y. Molecular biology of the pore-forming cytolysins from Staphylococcus aureus, a- and gamma-hemolysins and leukocidin. Biosci Biotechnol Biochem. 1997;61:56572. DOIPubMedGoogle Scholar
  8. Bhakdi  S, Bayley  H, Valeva  A, Walev  I, Walker  B, Weller  U, Staphylococcal alpha-toxin, streptolysin-O and Escherichia coli hemolysin: prototypes of pore-forming bacterial cytolysins. Arch Microbiol. 1996;165:739. DOIPubMedGoogle Scholar
  9. Song  L, Hobaugh  MR, Shustak  C, Cheley  S, Bayley  H, Gouaux  JE. Structure of staphylococcal alpha-hemolysin, a heptameric transmembrane pore. Science. 1996;274:185966. DOIPubMedGoogle Scholar
  10. Lesieur  C, Vecsey-Semjen  B, Abrami  L, Fivaz  M, Gisou van der Goot  F. Membrane insertion: the strategies of toxins. Mol Membr Biol. 1997;14:4564. DOIPubMedGoogle Scholar
  11. Collier  RJ. In: Moss J, Vaughan M, editors. ADP-ribosylating toxins and g proteins. Washington: American Society for Microbiology; 1990. p. 3-19.
  12. Wick  MJ, Iglewski  BH. In: Moss J, Vaughan M, editors. ADP-ribosylating toxins and g proteins. Washington: American Society for Microbiology; 1990. p. 31-43.
  13. Endo  Y, Tsurugi  K, Yutsudo  T, Takeda  Y, Ogasawara  Y, Igarashi  K. Site of action of a Vero toxin (VT2) from Escherichia coli O157:H7 and of Shiga toxin on eucaryotic ribosomes. Eur J Biochem. 1988;171:4550. DOIPubMedGoogle Scholar
  14. Saxena  SK, O'Brien  AD, Ackerman  EJ. Shiga toxin, Shiga-like toxin II variant, and ricin are all single-site RNA N-glycosidases of 28 S RNA when microinjected into Xenopus oocytes. J Biol Chem. 1989;264:596601.PubMedGoogle Scholar
  15. Tesh  VL, O'Brien  AD. The pathogenic mechanisms of Shiga toxin and the Shiga-like toxins. Mol Microbiol. 1991;5:181722. DOIPubMedGoogle Scholar
  16. O'Brien  AD, Tesh  VL, Donohue-Rolfe  A, Jackson  MP, Olsnes  S, Sandvig  K, Shiga toxin: biochemistry, genetics, mode of action, and role in pathogenesis. In: Sansonetti PJ, editor. Pathogenesis of shigellosis. 180th ed. Berlin-Heidelberg: Springer-Verlag; 1992. p. 66-94.
  17. O'Brien  AD, Kaper  JB. Shiga toxin-producing Escherichia coli: yesterday, today, and tomorrow. In: Kaper JB, O'Brien AD, editors. Escherichia coli O157:H7 and other Shiga toxin-producing E. coli strains. Washington: American Society for Microbiology; 1998. p. 1-11.
  18. Melton-Celsa  AR, O'Brien  AD. Activation of Shiga-like toxins by mouse and human intestinal mucus correlates with virulence of enterohemorrhagic Escherichia coli O91:H21 isolates in orally infected, streptomycin-treated mice. Infect Immun. 1996;64:156976.PubMedGoogle Scholar
  19. Stein  PE, Boodhoo  A, Tyrell  GT, Brunton  J, Read  RJ. Crystal structure of the cell-binding B oligomer of verotoxin-1 from E. coli. Nature. 1992;355:74850. DOIPubMedGoogle Scholar
  20. Frasier  ME, Chernaia  MM, Kozlov  YV, James  MNG. Crystal structure of the holotoxin from Shigella dysenteriae at 2.5 Å resolution. Nat Struct Biol. 1994;1:5964. DOIPubMedGoogle Scholar
  21. Sixma  TK, Kalk  KH, van Zanten  BA, Dauter  Z, Kingma  J, Witholt  B, Redefined structure of Escherichia coli heat-labile enterotoxin, a close relative of cholera toxin. J Mol Biol. 1993;230:890918. DOIPubMedGoogle Scholar
  22. Stein  PE, Boodhoo  A, Armstrong  GD, Cockle  SA, Klein  MH, Read  RJ. The crystal structure of pertussis toxin. Structure. 1994;2:4557. DOIPubMedGoogle Scholar
  23. Suh  J-K, Hovde  CJ, Robertus  JD. Shiga toxin attacks bacterial ribosomes as effectively as eukaryotic ribosomes. Biochemistry. 1998;37:93948. DOIPubMedGoogle Scholar
  24. Centers for Disease Control and Prevention. Addressing emerging infectious disease threats: a prevention strategy for the United States. MMWR Morb Mortal Wkly Rep. 1994;43:118.
  25. O'Brien  AD, Lively  TA, Chen  M, Rothman  SW, Formal  SB. Escherichia coli O157:H7 strains associated with hemorrhagic colitis in the United States produce a Shigella dysenteriae 1 (Shiga) like cytotoxin. Lancet. 1983;i:702. DOIGoogle Scholar
  26. Centers for Disease Control. Isolation of E. coli O157:H7 from sporadic cases of hemorrhagic colitisUnited States. MMWR Morb Mortal Wkly Rep. 1982;31:5805.PubMedGoogle Scholar
  27. Boyce  TG, Swerdlow  DL, Griffin  PM. Escherichia coli O157:H7 and the hemolytic-uremic syndrome. N Engl J Med. 1995;333:3648. DOIPubMedGoogle Scholar
  28. Aktories  K. Rho proteins: targets for bacterial toxins. Trends Microbiol. 1997;5:2828. DOIPubMedGoogle Scholar
  29. Oswald  E, Sugai  M, Labigne  A, Wu  HC, Fiorentini  C, Boquet  P, Cytotoxic necrotizing factor type 2 produced by virulent Escherichia coli modifies the small GTP-binding proteins Rho involved in assembly of actin stress fibers. Proc Natl Acad Sci U S A. 1994;91:38148. DOIPubMedGoogle Scholar
  30. Schmidt  G, Sehr  P, Wilm  M, Selzer  J, Mann  M, Aktories  K. Gln63 of Rho is deamidated by Escherichia coli cytotoxic necrotizing factor-1. Nature. 1997;387:7259. DOIPubMedGoogle Scholar
  31. Flatau  G, Lemichez  E, Gauthier  M, Chardin  P, Paris  S, Fiorentini  C, Toxin-induced activation of the G protein p21 Rho by deamidation of glutamine. Nature. 1997;387:72933. DOIPubMedGoogle Scholar
  32. Horiguchi  Y, Inoue  N, Masuda  M, Kashimoto  T, Katahira  J, Sugimoto  N, Bordetella bronchiseptica dermonecrotizing toxin induces reorganization of actin stress fibers through deamidation of Gln-63 of the GTP-binding protein Rho. Proc Natl Acad Sci U S A. 1997;94:116236. DOIPubMedGoogle Scholar
  33. Falbo  V, Pace  T, Picci  L, Pizzi  E, Caprioli  A. Isolation and nucleotide sequence of the gene encoding cytotoxic necrotizing factor 1 of Escherichia coli. Infect Immun. 1993;61:490914.PubMedGoogle Scholar
  34. Blum  G, Falbo  V, Caprioli  A, Hacker  J. Gene clusters encoding the cytotoxic necrotizing factor type 1, Prs-fimbriae and -hemolysin form the pathogenicity island II of the uropathogenic Escherichia coli strain J96. FEMS Microbiol Lett. 1995;126:18996.PubMedGoogle Scholar
  35. Lemichez  E, Flatau  G, Bruzzone  M, Boquet  P, Gauthier  M. Molecular localization of the Escherichia coli cytotoxic necrotizing factor CNF1 cell-binding and catalytic domains. Mol Microbiol. 1997;24:106170. DOIPubMedGoogle Scholar
  36. DeRycke  J, Gonzalez  EA, Blanco  J, Oswald  E, Blanco  M, Boivin  R. Evidence for two types of cytotoxic necrotizing factor in human and animal clinical isolates of Escherichia coli. J Clin Microbiol. 1990;28:6949.PubMedGoogle Scholar
  37. Andreu  A, Stapleton  AE, Fennell  C, Lockman  HA, Xercavins  M, Fernandez  F, Urovirulence determinants in Escherichia coli strains causing prostatitis. J Infect Dis. 1997;176:4649. DOIPubMedGoogle Scholar
  38. Nair  GB, Takeda  Y. The heat-stable enterotoxins. Microb Pathog. 1998;24:12331. DOIPubMedGoogle Scholar
  39. So  M, McCarthy  BJ. Nucleotide sequence of transposon Tn1681 encoding a heat-stable toxin (ST) and its identification in enterotoxigenic Escherichia coli strains. Proc Natl Acad Sci U S A. 1980;77:40115. DOIPubMedGoogle Scholar
  40. So  M, Boyer  HW, Betlach  M, Falkow  S. Molecular cloning of an Escherichia coli plasmid determinant that encodes for the production of heat-stable enterotoxin. J Bacteriol. 1976;128:46372.PubMedGoogle Scholar
  41. Giannella  RA. Escherichia coli heat-stable enterotoxins, guanylins, and their receptors: what are they and what do they do? J Lab Clin Med. 1995;125:17381.PubMedGoogle Scholar
  42. Singh  BR, Li  B, Read  D. Botulinum versus tetanus neurotoxins: why is botulinum neurotoxin but not tetanus neurotoxin a food poison? Toxicon. 1995;33:15417. DOIPubMedGoogle Scholar
  43. Jahn  R, Hanson  PI, Otto  H, Ahnert-Hilger  G. Botulinum and tetanus neurotoxins: emerging tools for the study of membrane fusion. Cold Spring Harb Symp Quant Biol. 1995;60:32935.PubMedGoogle Scholar
  44. Henderson  I, Davis  T, Elmore  M, Minton  NP. The genetic basis of toxin production in Clostridium botulinum and Clostridium tetani. In: Rood JI, McClane BA, Songer JG, Titball RW, editors. The clostridia: molecular biology and pathogenesis. San Diego: Academic Press; 1997. p. 261-94.
  45. Schiavo  G, Montecucco  C. The structure and mode of action of botulinum and tetanus toxins. In: Rood JI, McClane BA, Songer JG, Titball RW, editors. The clostridia: molecular biology and pathogenesis. San Diego: Academic Press; 1997. p. 295-322.
  46. Kessler  KR, Benecke  R. Botulinum toxin: from poison to remedy. Neurotoxicology. 1997;18:76170.PubMedGoogle Scholar
  47. Halpern  JL, Neale  EA. Neurospecific binding, internalization and retrograde axonal transport. Curr Top Microbiol Immunol. 1995;195:22141.PubMedGoogle Scholar
  48. Arnon  SS. Human tetanus and human botulism. In: Rood JI, McClane BA, Songer JG, Titball RW, editors. The clostridia: molecular biology and pathogenesis. San Diego: Academic Press; 1997. p. 95-115.
  49. Rago  JV, Schlievert  PM. Mechanisms of pathogenesis of staphylococcal and streptococcal superantigens. Curr Top Microbiol Immunol. 1998;225:8197.PubMedGoogle Scholar
  50. Lee  PK, Schlievert  PM. Molecular genetics of pyrogenic exotoxin "superantigens" of Group A streptococci and staphylococcus. Curr Top Microbiol Immunol. 1991;174:119.PubMedGoogle Scholar
  51. Schlievert  PM. Searching for superantigens. Immunol Invest. 1997;26:28390. DOIPubMedGoogle Scholar
  52. Bohach  GA, Stauffacher  CV, Ohlendorf  DH, Chi  YI, Vath  GM, Schlievert  PM. The staphylococcal and streptococcal pyrogenic toxin family. In: Singh BR, Tu AT, editors. Natural Toxins II. New York: Plenum Press; 1996. p. 131-54.
  53. Papageorgiou  AC, Acharya  KR. Superantigens as immunomodulators: recent structural insights. Structure. 1997;5:9916. DOIPubMedGoogle Scholar
  54. Prasad  GS, Radhakrishnan  R, Mitchell  DT, Earhart  CA, Dinges  MM, Cook  WJ, Refined structures of three crystal forms of toxic shock syndrome toxin-1 and of a tetramutant with reduced activity. Protein Sci. 1997;6:12207. DOIPubMedGoogle Scholar
  55. Betley  MJ, Borst  DW, Regassa  LB. Staphylococcal enterotoxins, toxic shock syndrome toxin and streptococcal pyrogenic exotoxins: a comparative study of their molecular biology. Chem Immunol. 1992;55:135.PubMedGoogle Scholar
  56. Stevens  DL. Superantigens: their role in infectious diseases. Immunol Invest. 1997;26:27581. DOIPubMedGoogle Scholar
  57. Harnett  MM. Analysis of G-proteins regulating signal transduction pathways. Methods Mol Biol. 1994;27:199211.PubMedGoogle Scholar
  58. Bokoch  GM, Katada  T, Northup  JK, Hewlett  EL, Gilman  AG. Identification of the predominant substrate for ADP-ribosylation by islet activating protein. J Biol Chem. 1983;258:20725.PubMedGoogle Scholar
  59. Neer  EJ. Heterotrimeric G proteins: organizers of transmembrane signals. Cell. 1995;80:24957. DOIPubMedGoogle Scholar
  60. Snider  DP. The mucosal adjuvant activities of ADP-ribosylating bacterial enterotoxins. Crit Rev Immunol. 1995;15:31748.PubMedGoogle Scholar
  61. Holmgren  J, Lycke  N, Czerkinsky  C. Cholera toxin and cholera-B subunit as oral mucosal adjuvant and antigen vector systems. Vaccine. 1993;11:117984. DOIPubMedGoogle Scholar
  62. Pastan  I. Targeted therapy of cancer with recombinant immunotoxins. Biochim Biophys Acta. 1997;1333:C16.PubMedGoogle Scholar
  63. Ghetie  MA, Ghetie  V, Vitetta  ES. Immunotoxins for the treatment of B-cell lymphomas. Mol Med. 1997;3:4207.PubMedGoogle Scholar
  64. Winkler  U, Barth  S, Schnell  R, Diehl  V, Engert  A. The emerging role of immunotoxins in leukemia and lymphoma. Ann Oncol. 1997;8:13946. DOIPubMedGoogle Scholar
  65. Murray  LJ, Habeshaw  JA, Wiels  J, Greaves  MF. Expression of Burkitt lymphoma-associated antigen (defined by the monoclonal antibody 38.13) on both normal and malignant germinal-centre B cells. Int J Cancer. 1985;36:5615. DOIPubMedGoogle Scholar
  66. Taga  S, Mangeney  M, Tursz  T, Wiels  J. Differential regulation of glycosphingolipid biosynthesis in phenotypically distinct Burkitt's lymphoma cell lines. Int J Cancer. 1995;61:2617. DOIPubMedGoogle Scholar
  67. LaCasse  EC, Saleh  MT, Patterson  B, Minden  MD, Gariepy  J. Shiga-like toxin purges human lymphoma from bone marrow of severe combined immunodeficient mice. Blood. 1996;88:155167.PubMedGoogle Scholar
  68. Wheeler  AH. Therapeutic uses of botulinum toxin. Am Fam Physician. 1997;55:5418.PubMedGoogle Scholar
  69. Averbuch-Heller  L, Leigh  RJ. Medical treatments for abnormal eye movements: pharmacological, optical and immunological strategies. Aust N Z J Ophthalmol. 1997;25:713.PubMedGoogle Scholar
  70. Carter  SR, Seiff  SR. Cosmetic botulinum toxin injections. Int Ophthalmol Clin. 1997;37:6979. DOIPubMedGoogle Scholar
  71. Maseri  A, Andreotti  F. Targeting new thrombolytic regimens at specific patient groups: implications for research and cost-containment. Eur Heart J. 1997;18:F2835.PubMedGoogle Scholar
  72. Levine  SR. Thrombolytic therapy for stroke: the new paradigm. Hosp Pract (Off Ed). 1997;32:5773.
  73. Cherry  JD. Comparative efficacy of acellular pertussis vaccines: an analysis of recent trials. Pediatr Infect Dis J. 1997;16:S906. DOIPubMedGoogle Scholar
  74. National Institutes of Health. The Jordan report: accelerated development of vaccines. 1998.
  75. Kraulis  PJ. MOLSCRIPT: A program to produce both detailed and schematic plots of protein structures. J Appl Cryst. 1991;24:94650. DOIGoogle Scholar

Main Article

Page created: December 10, 2010
Page updated: December 10, 2010
Page reviewed: December 10, 2010
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.