Volume 6, Number 3—June 2000
Perspective
Remote Sensing and Human Health: New Sensors and New Opportunities
Table 1
Disease | Vector | Location | Sensor | Ref. |
---|---|---|---|---|
Dracunculiasis | Cyclops spp. | Benin | TM | 1 |
Cyclops spp. | Nigeria | TM | 2 | |
Eastern equine | Culiseta melanura | Florida, USA | TM | 3 |
encephalomyelitis | ||||
Filariasis | Culex pipiens | Egypt | AVHRR | 4 |
Cx. pipiens | Egypt | TM | 5,6 | |
Leishmaniasis | Phlebotomus | SW Asia | AVHRR | 7 |
papatasi | ||||
Lyme disease | Ixodes scapularis | New York, USA | TM | 8, 9 |
I. scapularis | Wisconsin, USA | TM | 10 | |
Malaria | Anopheles | Mexico | TM | 11 |
albimanus | ||||
An. albimanus | Belize | SPOT | 12 | |
An. albimanus | Belize | SPOT | 13 | |
An. albimanus | Mexico | TM | 14 | |
An. spp. | Gambia | AVHRR, Meteosat | 15, 16 | |
An. albimanus | Mexico | TM | 17, 18 | |
Rift Valley fever | Aedes & Cx. spp. | Kenya | AVHRR | 19, 20 |
Cx. spp. | Kenya | TM, SAR | 21 | |
Cx. spp. | Senegal | SPOT, AVHRR | 22 | |
Schistosomiasis | Biomphalaria spp. | Egypt | AVHRR | 23 |
Trypanosomiasis | Glossina spp. | Kenya, Uganda | AVHRR | 24 |
Glossina spp. | Kenya | TM | 25 | |
Glossina spp. | West Africa | AVHRR | 26 | |
Glossina spp. | Africa | AVHRR | 27 | |
Glossina spp. | Southern Africa | AVHRR | 28 |
aSee Appendix 1 for explanation of sensor acronyms
References
- Clarke KC, Osleeb JR, Sherry JM, Meert JP, Larsson RW. The use of remote sensing and geographic information systems in UNICEF's dracunculiasis (Guinea worm) eradication effort. Prev Vet Med. 1990;11:229–35. DOIGoogle Scholar
- Ahearn SC, De Rooy C. Monitoring the effects of dracunculiasis remediation on agricultural productivity using satellite data. Int J Remote Sens. 1996;17:917–29. DOIGoogle Scholar
- Thompson DF, Malone JB, Harb M, Faris R, Huh OK, Buck AA, Bancroftian filariasis distribution and diurnal temperature differences in the southern Nile Delta. Emerg Infect Dis. 1996;2:234–5. DOIPubMedGoogle Scholar
- Hassan AN, Beck LR, Dister S. Prediction of villages at risk for filariasis transmission in the Nile Delta using remote sensing and geographic information system technologies. J Egypt Soc Parasitol. 1998;28:75–87.PubMedGoogle Scholar
- Hassan AN, Dister S, Beck L. Spatial analysis of lymphatic filariasis distribution in the Nile Delta in relation to some environmental variables using geographic information system technology. J Egypt Soc Parasitol. 1998;28:119–31.PubMedGoogle Scholar
- Cross ER, Newcomb WW, Tucker CJ. Use of weather data and remote sensing to predict the geographic and seasonal distribution of Phlebotomus paptasi in Southwest Asia. Am J Trop Med Hyg. 1996;54:530–6.PubMedGoogle Scholar
- Dister SW, Beck LR, Wood BL, Falco R, Fish D. The use of GIS and remote sensing technologies in a landscape approach to the study of Lyme disease transmission risk. Proceedings of GIS '93: Geographic Information Systems in Forestry, Environmental and Natural Resource Management; 1993 Feb 15-18; Vancouver, B.C., Canada. 1993.
- Dister SW, Fish D, Bros S, Frank DH, Wood BL. Landscape characterization of peridomestic risk for Lyme disease using satellite imagery. Am J Trop Med Hyg. 1997;57:687–92.PubMedGoogle Scholar
- Kitron U, Kazmierczak JJ. Spatial analysis of the distribution of Lyme disease in Wisconsin. Am J Epidemiol. 1997;145:558–66.PubMedGoogle Scholar
- Pope KO, Rejmánková E, Savage HM, Arredondo-Jimenez JI, Rodríguez MH, Roberts DR. Remote sensing of tropical wetlands for malaria control in Chiapas, Mexico. Ecol Appl. 1993;4:81–90. DOIGoogle Scholar
- Rejmánková E, Roberts DR, Pawley A, Manguin S, Polanco J. Predictions of adult Anopheles albimanus densities in villages based on distance to remotely sensed larval habitats. Am J Trop Med Hyg. 1995;53:482–8.PubMedGoogle Scholar
- Roberts DR, Paris JF, Manguin S, Harbach RE, Woodruff R, Rejmánková E, Predictions of malaria vector distribution in Belize based on multispectral satellite data. Am J Trop Med Hyg. 1996;54:304–8.PubMedGoogle Scholar
- Rodríguez AD, Rodríguez MH, Hernández JE, Dister SW, Beck LR, Rejmánková E, Landscape surrounding human settlements and malaria mosquito abundance in southern Chiapas, Mexico. J Med Entomol. 1996;33:39–48.PubMedGoogle Scholar
- Thomson MC, Connor SJ, Milligan PJM, Flasse SP. The ecology of malaria-as seen from Earth-observation satellites. Ann Trop Med Parasitol. 1996;90:243–64.PubMedGoogle Scholar
- Thomson MC, Connor SJ, Milligan PJM, Flasse SP. Mapping malaria risk in Africa: What can satellite data contribute? Parsitology Today. 1997;13:313–8. DOIGoogle Scholar
- Beck LR, Rodríguez MH, Dister SW, Rodríguez AD, Rejmánková E, Ulloa A, Remote sensing as a landscape epidemiologic tool to identify villages at high risk for malaria transmission. Am J Trop Med Hyg. 1994;51:271–80.PubMedGoogle Scholar
- Beck LR, Rodríguez MH, Dister SW, Rodríguez AD, Washino RK, Roberts DR, Assessment of a remote sensing based model for predicting malaria transmission risk in villages of Chiapas, Mexico. Am J Trop Med Hyg. 1997;56:99–106.PubMedGoogle Scholar
- Linthicum KJ, Bailey CL, Davies FG, Tucker CJ. Detection of Rift Valley Fever viral activity in Kenya by satellite remote sensing imagery. Science. 1987;235:1656–9. DOIPubMedGoogle Scholar
- Linthicum KJ, Bailey CL, Tucker CJ, Mitchell KD, Logan TM, Davies FG, Applications of polar-orbiting, meteorological satellite data to detect flooding in Rift Valley Fever virus vector mosquito habitats in Kenya. Med Vet Entomol. 1990;4:433–8. DOIPubMedGoogle Scholar
- Pope KO, Sheffner EJ, Linthicum KJ, Bailey CL, Logan TM, Kasischke ES, Identification of central Kenyan Rift Valley Fever virus vector habitats with Landsat TM and evaluation of their flooding status with Airborne Imaging Radar. Remote Sens Environ. 1992;40:185–96. DOIGoogle Scholar
- Linthicum KJ, Bailey CL, Tucker CJ, Gordon SW, Logan TM, Peters CJ, Man-made ecological alterations of Senegal River basin on Rift Valley Fever transmission. Sistema Terra 1994;45-7.
- Malone JB, Huh OK, Fehler DP, Wilson PA, Wilensky DE, Holmes RA, Temperature data from satellite images and the distribution of schistosomiasis in Egypt. Am J Trop Med Hyg. 1994;50:714–22.PubMedGoogle Scholar
- Rogers DJ. Satellite imagery, tsetse and trypanosomiasis. Prev Vet Med. 1991;11:201–20. DOIGoogle Scholar
- Kitron U, Otieno LH, Hungerford LL, Odulaja A, Brigham WU, Okello OO, Spatial analysis of the distribution of tsetse flies in the Lambwe Valley, Kenya, using Landsat TM satellite imagery and GIS. J Anim Ecol. 1996;65:371–80. DOIGoogle Scholar
- Rogers DJ, Randolph SE. Mortality rates and population density of tsetse flies correlated with satellite imagery. Nature. 1991;351:739–41. DOIPubMedGoogle Scholar
- Rogers DJ, Williams BG. Monitoring trypanosomiasis in space and time. Parasitology. 1993;106(Suppl):77–92.
- Robinson TP, Rogers DJ, Williams B. Mapping tsetse habitat suitability in the common fly belt of Southern Africa using multivariate analysis of climate and remotely sensed data. Med Vet Entomol. 1997;11:235–45. DOIPubMedGoogle Scholar
- Committee on Earth Observation Satellites. Coordination for the Next Decade (1995 CEOS Yearbook). European Space Agency. Smith System Engineering Ltd, UK; 1995.
- Stoney WE. The Pecora legacy-land observation satellites in the next century. Proceedings of the Pecora 13 Symposium; 1996 Aug 20-22; Sioux Falls, SD; Bethesda, MD: American Society for Photogrammetry and Remote Sensing; 1998. p. 260-74.
- Dister SW, Beck LR, Wood BL, Falco R, Fish D. The use of GIS and remote sensing technologies in a landscape approach to the study of Lyme disease transmission risk. In: Proceedings of GIS '93: Geographic Information Systems in Forestry, Environmental and Natural Resource Management. Vancouver, B.C., Canada; 1993.
- Dister SW, Fish D, Bros S, Frank DH, Wood BL. Landscape characterization of peridomestic risk for Lyme disease using satellite imagery. Am J Trop Med Hyg. 1997;57:687–92.PubMedGoogle Scholar
- Crist EP, Cicone RC. A physically based transformation of Thematic Mapper data - The TM Tasseled Cap. IEEE Trans Geosciences and Remote Sensing. 1984;22:256–63. DOIGoogle Scholar
- Lobitz B, Beck L, Huq A, Wood B, Fuchs G, Faroque ASG, Climate and infectious disease: Use of remote sensing for detection of Vibrio cholerae by indirect measurement. Proc Natl Acad Sci U S A. 2000;97:1438–43. DOIPubMedGoogle Scholar
- Huq A, Colwell RR. Vibrios in the marine and estuarine environments. J Mar Biotechnol. 1995;3:60–3.
- NASA Jet Propulsion Laboratory, Physical Oceanography Distributed Active Archive Center. Pasadena, California; 1996. Archived data available at the following URL: http://podaac.jpl.nasa.gov
- Center for Space Research. University of Texas, Austin; 1996. Archived data available at the following URL: http://www.csr.utexas.edu.
- NASA Goddard Distributed Active Archive Center. Greenbelt, Maryland; 1996. Archived data available at the following URL: http://seawifs.gsfc.nasa.gov/cgibrs/level3.pl
1CHAART was established at Ames Research Center by NASA's Life Sciences Division, within the Office of Life & Microgravity Sciences & Applications, to make remote sensing, geographic information systems, global positioning systems, and computer modeling available to investigators in the human health community.
2The information gathered during the CHAART sensor evaluation process is available at http://geo.arc.nasa.gov/sge/health/sensor/sensor.html.
Page created: December 16, 2010
Page updated: December 16, 2010
Page reviewed: December 16, 2010
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.