Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 6, Number 3—June 2000
Perspective

Remote Sensing and Human Health: New Sensors and New Opportunities

Louisa R. Beck*†Comments to Author , Bradley M. Lobitz†, and Byron L. Wood†
Author affiliations: *California State University, Monterey Bay, California, USA; †NASA Ames Research Center, Moffett Field, California, USA

Main Article

Table 1

Research using remote sensing data to map disease vectorsa

Disease Vector Location Sensor Ref.
Dracunculiasis Cyclops spp. Benin TM 1
Cyclops spp. Nigeria TM 2
Eastern equine Culiseta melanura Florida, USA TM 3
encephalomyelitis
Filariasis Culex pipiens Egypt AVHRR 4
Cx. pipiens Egypt TM 5,6
Leishmaniasis Phlebotomus SW Asia AVHRR 7
papatasi
Lyme disease Ixodes scapularis New York, USA TM 8, 9
I. scapularis Wisconsin, USA TM 10
Malaria Anopheles Mexico TM 11
albimanus
An. albimanus Belize SPOT 12
An. albimanus Belize SPOT 13
An. albimanus Mexico TM 14
An. spp. Gambia AVHRR, Meteosat 15, 16
An. albimanus Mexico TM 17, 18
Rift Valley fever Aedes & Cx. spp. Kenya AVHRR 19, 20
Cx. spp. Kenya TM, SAR 21
Cx. spp. Senegal SPOT, AVHRR 22
Schistosomiasis Biomphalaria spp. Egypt AVHRR 23
Trypanosomiasis Glossina spp. Kenya, Uganda AVHRR 24
Glossina spp. Kenya TM 25
Glossina spp. West Africa AVHRR 26
Glossina spp. Africa AVHRR 27
Glossina spp. Southern Africa AVHRR 28

aSee Appendix 1 for explanation of sensor acronyms

Main Article

References
  1. Clarke  KC, Osleeb  JR, Sherry  JM, Meert  JP, Larsson  RW. The use of remote sensing and geographic information systems in UNICEF's dracunculiasis (Guinea worm) eradication effort. Prev Vet Med. 1990;11:22935. DOIGoogle Scholar
  2. Ahearn  SC, De Rooy  C. Monitoring the effects of dracunculiasis remediation on agricultural productivity using satellite data. Int J Remote Sens. 1996;17:91729. DOIGoogle Scholar
  3. Freier  JW. Eastern equine encephalomyelitis. Lancet. 1993;342:12813. DOIPubMedGoogle Scholar
  4. Thompson  DF, Malone  JB, Harb  M, Faris  R, Huh  OK, Buck  AA, Bancroftian filariasis distribution and diurnal temperature differences in the southern Nile Delta. Emerg Infect Dis. 1996;2:2345. DOIPubMedGoogle Scholar
  5. Hassan  AN, Beck  LR, Dister  S. Prediction of villages at risk for filariasis transmission in the Nile Delta using remote sensing and geographic information system technologies. J Egypt Soc Parasitol. 1998;28:7587.PubMedGoogle Scholar
  6. Hassan  AN, Dister  S, Beck  L. Spatial analysis of lymphatic filariasis distribution in the Nile Delta in relation to some environmental variables using geographic information system technology. J Egypt Soc Parasitol. 1998;28:11931.PubMedGoogle Scholar
  7. Cross  ER, Newcomb  WW, Tucker  CJ. Use of weather data and remote sensing to predict the geographic and seasonal distribution of Phlebotomus paptasi in Southwest Asia. Am J Trop Med Hyg. 1996;54:5306.PubMedGoogle Scholar
  8. Dister  SW, Beck  LR, Wood  BL, Falco  R, Fish  D. The use of GIS and remote sensing technologies in a landscape approach to the study of Lyme disease transmission risk. Proceedings of GIS '93: Geographic Information Systems in Forestry, Environmental and Natural Resource Management; 1993 Feb 15-18; Vancouver, B.C., Canada. 1993.
  9. Dister  SW, Fish  D, Bros  S, Frank  DH, Wood  BL. Landscape characterization of peridomestic risk for Lyme disease using satellite imagery. Am J Trop Med Hyg. 1997;57:68792.PubMedGoogle Scholar
  10. Kitron  U, Kazmierczak  JJ. Spatial analysis of the distribution of Lyme disease in Wisconsin. Am J Epidemiol. 1997;145:55866.PubMedGoogle Scholar
  11. Pope  KO, Rejmánková  E, Savage  HM, Arredondo-Jimenez  JI, Rodríguez  MH, Roberts  DR. Remote sensing of tropical wetlands for malaria control in Chiapas, Mexico. Ecol Appl. 1993;4:8190. DOIGoogle Scholar
  12. Rejmánková  E, Roberts  DR, Pawley  A, Manguin  S, Polanco  J. Predictions of adult Anopheles albimanus densities in villages based on distance to remotely sensed larval habitats. Am J Trop Med Hyg. 1995;53:4828.PubMedGoogle Scholar
  13. Roberts  DR, Paris  JF, Manguin  S, Harbach  RE, Woodruff  R, Rejmánková  E, Predictions of malaria vector distribution in Belize based on multispectral satellite data. Am J Trop Med Hyg. 1996;54:3048.PubMedGoogle Scholar
  14. Rodríguez  AD, Rodríguez  MH, Hernández  JE, Dister  SW, Beck  LR, Rejmánková  E, Landscape surrounding human settlements and malaria mosquito abundance in southern Chiapas, Mexico. J Med Entomol. 1996;33:3948.PubMedGoogle Scholar
  15. Thomson  MC, Connor  SJ, Milligan  PJM, Flasse  SP. The ecology of malaria-as seen from Earth-observation satellites. Ann Trop Med Parasitol. 1996;90:24364.PubMedGoogle Scholar
  16. Thomson  MC, Connor  SJ, Milligan  PJM, Flasse  SP. Mapping malaria risk in Africa: What can satellite data contribute? Parsitology Today. 1997;13:3138. DOIGoogle Scholar
  17. Beck  LR, Rodríguez  MH, Dister  SW, Rodríguez  AD, Rejmánková  E, Ulloa  A, Remote sensing as a landscape epidemiologic tool to identify villages at high risk for malaria transmission. Am J Trop Med Hyg. 1994;51:27180.PubMedGoogle Scholar
  18. Beck  LR, Rodríguez  MH, Dister  SW, Rodríguez  AD, Washino  RK, Roberts  DR, Assessment of a remote sensing based model for predicting malaria transmission risk in villages of Chiapas, Mexico. Am J Trop Med Hyg. 1997;56:99106.PubMedGoogle Scholar
  19. Linthicum  KJ, Bailey  CL, Davies  FG, Tucker  CJ. Detection of Rift Valley Fever viral activity in Kenya by satellite remote sensing imagery. Science. 1987;235:16569. DOIPubMedGoogle Scholar
  20. Linthicum  KJ, Bailey  CL, Tucker  CJ, Mitchell  KD, Logan  TM, Davies  FG, Applications of polar-orbiting, meteorological satellite data to detect flooding in Rift Valley Fever virus vector mosquito habitats in Kenya. Med Vet Entomol. 1990;4:4338. DOIPubMedGoogle Scholar
  21. Pope  KO, Sheffner  EJ, Linthicum  KJ, Bailey  CL, Logan  TM, Kasischke  ES, Identification of central Kenyan Rift Valley Fever virus vector habitats with Landsat TM and evaluation of their flooding status with Airborne Imaging Radar. Remote Sens Environ. 1992;40:18596. DOIGoogle Scholar
  22. Linthicum  KJ, Bailey  CL, Tucker  CJ, Gordon  SW, Logan  TM, Peters  CJ, Man-made ecological alterations of Senegal River basin on Rift Valley Fever transmission. Sistema Terra 1994;45-7.
  23. Malone  JB, Huh  OK, Fehler  DP, Wilson  PA, Wilensky  DE, Holmes  RA, Temperature data from satellite images and the distribution of schistosomiasis in Egypt. Am J Trop Med Hyg. 1994;50:71422.PubMedGoogle Scholar
  24. Rogers  DJ. Satellite imagery, tsetse and trypanosomiasis. Prev Vet Med. 1991;11:20120. DOIGoogle Scholar
  25. Kitron  U, Otieno  LH, Hungerford  LL, Odulaja  A, Brigham  WU, Okello  OO, Spatial analysis of the distribution of tsetse flies in the Lambwe Valley, Kenya, using Landsat TM satellite imagery and GIS. J Anim Ecol. 1996;65:37180. DOIGoogle Scholar
  26. Rogers  DJ, Randolph  SE. Mortality rates and population density of tsetse flies correlated with satellite imagery. Nature. 1991;351:73941. DOIPubMedGoogle Scholar
  27. Rogers  DJ, Williams  BG. Monitoring trypanosomiasis in space and time. Parasitology. 1993;106(Suppl):7792.
  28. Robinson  TP, Rogers  DJ, Williams  B. Mapping tsetse habitat suitability in the common fly belt of Southern Africa using multivariate analysis of climate and remotely sensed data. Med Vet Entomol. 1997;11:23545. DOIPubMedGoogle Scholar
  29. Committee on Earth Observation Satellites. Coordination for the Next Decade (1995 CEOS Yearbook). European Space Agency. Smith System Engineering Ltd, UK; 1995.
  30. Stoney  WE. The Pecora legacy-land observation satellites in the next century. Proceedings of the Pecora 13 Symposium; 1996 Aug 20-22; Sioux Falls, SD; Bethesda, MD: American Society for Photogrammetry and Remote Sensing; 1998. p. 260-74.
  31. Dister  SW, Beck  LR, Wood  BL, Falco  R, Fish  D. The use of GIS and remote sensing technologies in a landscape approach to the study of Lyme disease transmission risk. In: Proceedings of GIS '93: Geographic Information Systems in Forestry, Environmental and Natural Resource Management. Vancouver, B.C., Canada; 1993.
  32. Dister  SW, Fish  D, Bros  S, Frank  DH, Wood  BL. Landscape characterization of peridomestic risk for Lyme disease using satellite imagery. Am J Trop Med Hyg. 1997;57:68792.PubMedGoogle Scholar
  33. Crist  EP, Cicone  RC. A physically based transformation of Thematic Mapper data - The TM Tasseled Cap. IEEE Trans Geosciences and Remote Sensing. 1984;22:25663. DOIGoogle Scholar
  34. Lobitz  B, Beck  L, Huq  A, Wood  B, Fuchs  G, Faroque  ASG, Climate and infectious disease: Use of remote sensing for detection of Vibrio cholerae by indirect measurement. Proc Natl Acad Sci U S A. 2000;97:143843. DOIPubMedGoogle Scholar
  35. Huq  A, Colwell  RR. Vibrios in the marine and estuarine environments. J Mar Biotechnol. 1995;3:603.
  36. NASA Jet Propulsion Laboratory, Physical Oceanography Distributed Active Archive Center. Pasadena, California; 1996. Archived data available at the following URL: http://podaac.jpl.nasa.gov
  37. Center for Space Research. University of Texas, Austin; 1996. Archived data available at the following URL: http://www.csr.utexas.edu.
  38. NASA Goddard Distributed Active Archive Center. Greenbelt, Maryland; 1996. Archived data available at the following URL: http://seawifs.gsfc.nasa.gov/cgibrs/level3.pl

Main Article

1CHAART was established at Ames Research Center by NASA's Life Sciences Division, within the Office of Life & Microgravity Sciences & Applications, to make remote sensing, geographic information systems, global positioning systems, and computer modeling available to investigators in the human health community.

2The information gathered during the CHAART sensor evaluation process is available at http://geo.arc.nasa.gov/sge/health/sensor/sensor.html.

Page created: December 16, 2010
Page updated: December 16, 2010
Page reviewed: December 16, 2010
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.
file_external