Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 6, Number 5—October 2000
Synopsis

Antigenic Variation in Vector-Borne Pathogens

Alan G. Barbour*Comments to Author  and Blanca I. Restrepo†

Author affiliations: *University of California Irvine, Irvine, California; and †Corporación para Investigaciones Biológicas, Medellín, Colombia

Article in Chinese

Main Article

Figure 1

asdf

Figure 1. Relative densities of a vector-borne pathogen in the blood of four hosts, A-D. The gray horizontal lines represent the lower thresholds for the persistence of infection, transmission to a new vector, symptomatic disease in the host, and death of the host. In host A, overwhelming infection causes death. In hosts B and C, there is antigenic variation of the pathogen; B differs from C in the continuing likelihood of transmission even during periods of no or little illness. In case C, the host remains infected but is not infectious between relapses of high-density parasitemia and illness. In host D, the pathogen is cleared from the blood by the immune system. The relative density of the pathogens in the blood is on the y axis. If the arthropod vector of the infection fed on the four hosts at different times, the following outcomes would be observed: a bite at time 1 would not result in transmission because the density of pathogens in the blood was insufficient for uptake and establishment of the pathogen in the vector. At times 2 or 3, the disease agent is transmitted to the biting arthropod, although the hosts bitten at time 2 are not yet ill. At time 3, the infection worsens, in case A in the absence of an effective immune response. In cases B-D, the infection peaks as neutralizing antibodies to the infecting serotype appear in the blood at time 3. An arthropod taking a blood meal at time 4 could acquire the infection from host B but not from hosts C or D. In case D, the infection has been cleared by time 4. At time 5, both B and C could transmit the pathogens again and both have a relapse of illness as the result of the proliferation of a new serotype. The figure is modified from a figure by Turner (7).

Main Article

References
  1. Wang  IN, Dykhuizen  DE, Qiu  W, Dunn  JJ, Bosler  EM, Luft  BJ. Genetic diversity of ospC in a local population of Borrelia burgdorferi sensu stricto. Genetics. 1999;151:1530.PubMedGoogle Scholar
  2. Stevenson  B, Bockenstedt  LK, Barthold  SW. Expression and gene sequence of outer surface protein C of Borrelia burgdorferi reisolated from chronically infected mice. Infect Immun. 1994;62:356871.PubMedGoogle Scholar
  3. Beale  GH. J.F. W. Antigenic variation in unicellular organisms. Annu Rev Microbiol. 1961;15:26396. DOIGoogle Scholar
  4. Barbour  AG, Hayes  SF. Biology of Borrelia species. Microbiol Rev. 1986;50:381400.PubMedGoogle Scholar
  5. de la Vega  I, Gonzalez  A, Blasco  R, Calvo  V, Vinuela  E. Nucleotide sequence and variability of the inverted terminal repetitions of African swine fever virus DNA. Virology. 1994;201:1526. DOIPubMedGoogle Scholar
  6. Zuckert  WR, Meyer  J, Barbour  AG. Comparative analysis and immunological characterization of the Borrelia Bdr protein family. Infect Immun. 1999;67:325766.PubMedGoogle Scholar
  7. Turner  CM. Antigenic variation in Trypanosoma brucei infections: an holistic view. J Cell Sci. 1999;112:318792.PubMedGoogle Scholar
  8. Barbour  AG. Immunobiology of relapsing fever. Contrib Microbiol Immunol. 1987;8:12537.PubMedGoogle Scholar
  9. Vickerman  K. Trypanosome sociology and antigenic variation. Parasitology. 1989;99:S3747. DOIPubMedGoogle Scholar
  10. Deitsch  KW, Moxon  ER, Wellems  TE. Shared themes of antigenic variation and virulence in bacterial, protozoal, and fungal infections. Microbiol Mol Biol Rev. 1997;61:28193.PubMedGoogle Scholar
  11. Hinnebusch  BJ, Barbour  AG, Restrepo  BI, Schwan  TG. Population structure of the relapsing fever spirochete Borrelia hermsii as indicated by polymorphism of two multigene families that encode immunogenic outer surface lipoproteins. Infect Immun. 1998;66:43240.PubMedGoogle Scholar
  12. Barbour  AG. Linear DNA of Borrelia species and antigenic variation. Trends Microbiol. 1993;1:2369. DOIPubMedGoogle Scholar
  13. Stoenner  HG, Dodd  T, Larsen  C. Antigenic variation of Borrelia hermsii. J Exp Med. 1982;156:1297311. DOIPubMedGoogle Scholar
  14. Barbour  AG, Tessier  SL, Stoenner  HG. Variable major proteins of Borrellia hermsii. J Exp Med. 1982;156:131224. DOIPubMedGoogle Scholar
  15. Burman  N, Bergstrom  S, Restrepo  BI, Barbour  AG. The variable antigens Vmp7 and Vmp21 of the relapsing fever bacterium Borrelia hermsii are structurally analogous to the VSG proteins of the African trypanosome. Mol Microbiol. 1990;4:171526. DOIPubMedGoogle Scholar
  16. Restrepo  BI, Kitten  T, Carter  CJ, Infante  D, Barbour  AG. Subtelomeric expression regions of Borrelia hermsii linear plasmids are highly polymorphic. Mol Microbiol. 1992;6:3299311. DOIPubMedGoogle Scholar
  17. Vidal  V, Scragg  IG, Cutler  SJ, Rockett  KA, Fekade  D, Warrell  DA, Variable major lipoprotein is a principal TNF-inducing factor of louse-borne relapsing fever. Nat Med. 1998;4:141620. DOIPubMedGoogle Scholar
  18. Shamaei-Tousi  A, Martin  P, Bergh  A, Burman  N, Brännström  T, Bergström  S. Erythrocyte-aggregating relapsing fever spirochete Borrelia crocidurae induces formation of microemboli. J Infect Dis. 1999;180:192938. DOIPubMedGoogle Scholar
  19. Pennington  PM, Cadavid  D, Bunikis  J, Norris  SJ, Barbour  AG. Extensive interplasmidic duplications change the virulence phenotype of the relapsing fever agent Borrelia turicatae. Mol Microbiol. 1999;34:112032. DOIPubMedGoogle Scholar
  20. Cadavid  D, Thomas  DD, Crawley  R, Barbour  AG. Variability of a bacterial surface protein and disease expression in a possible mouse model of systemic Lyme borreliosis. J Exp Med. 1994;179:63142. DOIPubMedGoogle Scholar
  21. Pennington  PM, Allred  CD, West  CS, Alvarez  R, Barbour  AG. Arthritis severity and spirochete burden are determined by serotype in the Borrelia turicatae-mouse model of Lyme disease. Infect Immun. 1997;65:28592.PubMedGoogle Scholar
  22. Kitten  T, Barbour  AG. Juxtaposition of expressed variable antigen genes with a conserved telomere in the bacterium Borrelia hermsii. Proc Natl Acad Sci U S A. 1990;87:607781. DOIPubMedGoogle Scholar
  23. Barbour  AG, Burman  N, Carter  CJ, Kitten  T, Bergstrom  S. Variable antigen genes of the relapsing fever agent Borrelia hermsii are activated by promoter addition. Mol Microbiol. 1991;5:48993. DOIPubMedGoogle Scholar
  24. Kitten  T, Barrera  AV, Barbour  AG. Intragenic recombination and a chimeric outer membrane protein in the relapsing fever agent Borrelia hermsii. J Bacteriol. 1993;175:251622.PubMedGoogle Scholar
  25. Restrepo  BI, Carter  CJ, Barbour  AG. Activation of a vmp pseudogene in Borrelia hermsii: an alternate mechanism of antigenic variation during relapsing fever. Mol Microbiol. 1994;13:28799. DOIPubMedGoogle Scholar
  26. Restrepo  BI, Barbour  AG. Antigen diversity in the bacterium B. hermsii through "somatic" mutations in rearranged vmp genes. Cell. 1994;78:86776. DOIPubMedGoogle Scholar
  27. Carter  CJ, Bergstrom  S, Norris  SJ, Barbour  AG. A family of surface-exposed proteins of 20 kilodaltons in the genus Borrelia. Infect Immun. 1994;62:27929.PubMedGoogle Scholar
  28. Barbour  AG, Carter  CJ, Sohaskey  CD. Surface protein variation by expression site switching in the relapsing fever agent Borrelia hermsii. Infect Immun. 2000. In press.
  29. Schwan  TG, Hinnebusch  BJ. Bloodstream- versus tick-associated variants of a relapsing fever bacterium. Science. 1998;280:193840. DOIPubMedGoogle Scholar
  30. Zhang  JR, Hardham  JM, Barbour  AG, Norris  SJ. Antigenic variation in Lyme disease borreliae by promiscuous recombination of VMP-like sequence cassettes. Cell. 1997;89:27585. DOIPubMedGoogle Scholar
  31. Zhang  JR, Norris  SJ. Kinetics and in vivo induction of genetic variation of vlsE in Borrelia burgdorferi. Infect Immun. 1998;66:368997.PubMedGoogle Scholar
  32. Kieser  ST, Eriks  IS, Palmer  GH. Cyclic rickettsemia during persistent Anaplasma marginale infection of cattle. Infect Immun. 1990;58:11179.PubMedGoogle Scholar
  33. Palmer  GH, Abbott  JR, French  DM, McElwain  TF. Persistence of Anaplasma ovis infection and conservation of the msp-2 and msp-3 multigene families within the genus Anaplasma. Infect Immun. 1998;66:60359.PubMedGoogle Scholar
  34. Sulsona  CR, Mahan  SM, Barbet  AF. The map1 gene of Cowdria ruminantium is a member of a multigene family containing both conserved and variable genes. Biochem Biophys Res Commun. 1999;257:3005. DOIPubMedGoogle Scholar
  35. Zhi  N, Ohashi  N, Rikihisa  Y. Multiple p44 genes encoding major outer membrane proteins are expressed in the human granulocytic ehrlichiosis agent. J Biol Chem. 1999;274:1782836. DOIPubMedGoogle Scholar
  36. French  DM, Brown  WC, Palmer  GH. Emergence of Anaplasma marginale antigenic variants during persistent rickettsemia. Infect Immun. 1999;67:583440.PubMedGoogle Scholar
  37. Rudenko  G, Cross  M, Borst  P. Changing the end: antigenic variation orchestrated at the telomeres of African trypanosomes. Trends Microbiol. 1998;6:1136. DOIPubMedGoogle Scholar
  38. Lamont  GS, Tucker  RS, Cross  GA. Analysis of antigen switching rates in Trypanosoma brucei. Parasitology. 1986;92:35567. DOIPubMedGoogle Scholar
  39. Turner  CM. The rate of antigenic variation in fly-transmitted and syringe-passaged infections of Trypanosoma brucei. FEMS Microbiol Lett. 1997;153:22731. DOIPubMedGoogle Scholar
  40. Pays  E, Tebabi  P, Pays  A, Coquelet  H, Revelard  P, Salmon  D, The genes and transcripts of an antigen gene expression site from T. brucei. Cell. 1989;57:83545. DOIPubMedGoogle Scholar
  41. Lips  S, Revelard  P, Pays  E. Identification of a new expression site-associated gene in the complete 30.5 kb sequence from the AnTat 1.3A variant surface protein gene expression site of Trypanosoma brucei. Mol Biochem Parasitol. 1993;62:1357. DOIPubMedGoogle Scholar
  42. Bitter  W, Gerrits  H, Kieft  R, Borst  P. The role of transferrin-receptor variation in the host range of Trypanosoma brucei. Nature. 1998;391:499502. DOIPubMedGoogle Scholar
  43. Baltz  T, Giroud  C, Bringaud  F, Eisen  H, Jacquemot  C, Roth  CW. Exposed epitopes on a Trypanosoma equiperdum variant surface glycoprotein altered by point mutations. EMBO J. 1991;10:16539.PubMedGoogle Scholar
  44. Lu  Y, Alarcon  CM, Hall  T, Reddy  LV, Donelson  JE. A strand bias occurs in point mutations associated with variant surface glycoprotein gene conversion in Trypanosoma rhodesiense. Mol Cell Biol. 1994;14:397180.PubMedGoogle Scholar
  45. Gommers-Ampt  J, Lutgerink  J, Borst  P. A novel DNA nucleotide in Trypanosoma brucei only present in the mammalian phase of the life-cycle. Nucleic Acids Res. 1991;19:174551. DOIPubMedGoogle Scholar
  46. McCulloch  R, Barry  JD. A role for RAD51 and homologous recombination in Trypanosoma brucei antigenic variation. Genes Dev. 1999;13:287588. DOIPubMedGoogle Scholar
  47. Rudenko  G, Blundell  PA, Dirks-Mulder  A, Kieft  R, Borst  P. A ribosomal DNA promoter replacing the promoter of a telomeric VSG gene expression site can be efficiently switched on and off in T. brucei. Cell. 1995;83:54753. DOIPubMedGoogle Scholar
  48. Roberts  DJ, Craig  AG, Berendt  AR, Pinches  R, Nash  G, Marsh  K, Rapid switching to multiple antigenic and adhesive phenotypes in malaria. Nature. 1992;357:68992. DOIPubMedGoogle Scholar
  49. Baruch  DI, Pasloske  BL, Singh  HB, Bi  X, Ma  XC, Feldman  M, Cloning the P. falciparum gene encoding PfEMP1, a malarial variant antigen and adherence receptor on the surface of parasitized human erythrocytes. Cell. 1995;82:7787. DOIPubMedGoogle Scholar
  50. Gardner  JP, Pinches  RA, Roberts  DJ, Newbold  CI. Variant antigens and endothelial receptor adhesion in Plasmodium falciparum. Proc Natl Acad Sci U S A. 1996;93:35038. DOIPubMedGoogle Scholar
  51. Smith  JD, Chitnis  CE, Craig  AG, Roberts  DJ, Hudson-Taylor  DE, Peterson  DS, Switches in expression of Plasmodium falciparum var genes correlate with changes in antigenic and cytoadherent phenotypes of infected erythrocytes. Cell. 1995;82:10110. DOIPubMedGoogle Scholar
  52. Su  XZ, Heatwole  VM, Wertheimer  SP, Guinet  F, Herrfeldt  JA, Peterson  DS, The large diverse gene family var encodes proteins involved in cytoadherence and antigenic variation of Plasmodium falciparum-infected erythrocytes. Cell. 1995;82:89100. DOIPubMedGoogle Scholar
  53. Hernandez-Rivas  R, Mattei  D, Sterkers  Y, Peterson  DS, Wellems  TE, Scherf  A. Expressed var genes are found in Plasmodium falciparum subtelomeric regions. Mol Cell Biol. 1997;17:60411.PubMedGoogle Scholar
  54. Chen  Q, Fernandez  V, Sundstrom  A, Schlichtherle  M, Datta  S, Hagblom  P, Developmental selection of var gene expression in Plasmodium falciparum. Nature. 1998;394:3925. DOIPubMedGoogle Scholar
  55. Scherf  A, Hernandez-Rivas  R, Buffet  P, Bottius  E, Benatar  C, Pouvelle  B, Antigenic variation in malaria: in situ switching, relaxed and mutually exclusive transcription of var genes during intra-erythrocytic development in Plasmodium falciparum. EMBO J. 1998;17:541826. DOIPubMedGoogle Scholar
  56. Kyes  SA, Rowe  JA, Kriek  N, Newbold  CI. Rifins: a second family of clonally variant proteins expressed on the surface of red cells infected with Plasmodium falciparum. Proc Natl Acad Sci U S A. 1999;96:93338. DOIPubMedGoogle Scholar
  57. Fernandez  V, Hommel  M, Chen  Q, Hagblom  P, Wahlgren  M. Small, clonally variant antigens expressed on the surface of the Plasmodium falciparum-infected erythrocyte are encoded by the rif gene family and are the target of human immune responses. J Exp Med. 1999;190:1393404. DOIPubMedGoogle Scholar
  58. Allred  DR, Cinque  RM, Lane  TJ, Ahrens  KP. Antigenic variation of parasite-derived antigens on the surface of Babesia bovis-infected erythrocytes. Infect Immun. 1994;62:918.PubMedGoogle Scholar
  59. O'Connor  RM, Lane  TJ, Stroup  SE, Allred  DR. Characterization of a variant erythrocyte surface antigen (VESA1) expressed by Babesia bovis during antigenic variation. Mol Biochem Parasitol. 1997;89:25970. DOIPubMedGoogle Scholar
  60. O'Connor  RM, Allred  DR. Selection of Babesia bovis-infected erythrocytes for adhesion to endothelial cells coselects for altered variant erythrocyte surface antigen isoforms. J Immunol. 2000;164:203745.PubMedGoogle Scholar
  61. Allred  DR, Carlton  JM, Satcher  RL, Long  JA, Brown  WC, Patterson  PE, The ves multigene family of B. bovis encodes components of rapid antigenic variation at the infected erythrocyte surface. Mol Cell. 2000;5:15362. DOIPubMedGoogle Scholar
  62. Barbour  AG, Tessier  SL, Todd  WJ. Lyme disease spirochetes and ixodid tick spirochetes share a common surface antigenic determinant defined by a monoclonal antibody. Infect Immun. 1983;41:795804.PubMedGoogle Scholar
  63. Schwan  TG, Piesman  J. Temporal changes in outer surface proteins A and C of the Lyme disease-associated spirochete, Borrelia burgdorferi, during the chain of infection in ticks and mice. J Clin Microbiol. 2000;38:3828.PubMedGoogle Scholar
  64. Jonsson  M, Noppa  L, Barbour  AG, Bergstrom  S. Heterogeneity of outer membrane proteins in Borrelia burgdorferi: comparison of osp operons of three isolates of different geographic origins. Infect Immun. 1992;60:184553.PubMedGoogle Scholar
  65. de Silva  AM, Zeidner  NS, Zhang  Y, Dolan  MC, Piesman  J, Fikrig  E. Influence of outer surface protein A antibody on Borrelia burgdorferi within feeding ticks. Infect Immun. 1999;67:305.PubMedGoogle Scholar

Main Article

Page created: December 17, 2010
Page updated: December 17, 2010
Page reviewed: December 17, 2010
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.
file_external