Volume 7, Number 1—February 2001
Research
Transferable Plasmid-Mediated Resistance to Streptomycin in Clinical Isolate of Yersinia pestis
Table 1
Characteristics | ||
---|---|---|
Strain | and plasmid contenta | Source or reference |
Y. pestis | ||
16/95 | pFra, pPla, pYV, pIP1203 Tra+b Smc | Wild strain |
6/69 | pFra, pPla, pYV | Wild strain |
6/69cN | Nald, pFra, pPla | Spontaneous Nal mutant of pYV cured 6/69 |
6/69cNR | Nal, Rife, pFra, pPla | Spontaneous Rif mutant of 6/69cN |
6/69cN(pIP1203) | Nal, pFra, pPla, pIP1203 Tra+ Sm | Transconjugant 16/95 x 6/69cN |
Y. pseudotuberculosis | ||
IP32790 | pYV | Wild strain |
IP32790cN | Nal | Spontaneous Nal mutant of pYV cured IP32790 |
IP32790cN(pIP1203) | Nal, pIP1203 Tra+ Sm | Transconjugant 16/95 x IP32790cN |
Y. enterocolitica | ||
IP864 | pYV | Wild strain |
IP864cN | Nal | Spontaneous Nal mutant of pYV cured IP864 |
Escherichia coli | ||
C600R | thr leuB6 thi-1 lacY supE rpoB | Spontaneous Rif mutant of C600, Bachmann (9) |
JM109 | hsdR- supE gyrA | Yanisch-Perron et al. (10) |
K802N | hsdR- hsdM+ gal- met- supE gyrA | Wood (11) |
K802N(pIP1203) | pIP1203 Tra+ Sm | Transconjugant 16/95 x K802N |
aPlasmid content = pFRa, pPla, and pYV are the endogenous plasmids of Y pestis (12).
bTra+ = self-transferable.
cSm = streptomycin resistance.
dNal = nalidixic acid resistance.
eRif = rifampicin resistance.
References
- Pollitzer R. Plague. In: WHO Monograph Series 22 World Health; Geneva: World Health Organization; 1954.
- World Health Organization. Human plague in 1996. Wkly Epidemiol Rec. 1998;73:366–9.PubMedGoogle Scholar
- Schrag SJ, Wiener P. Emerging infectious diseases: what are the relative roles of ecology and evolution? Trends Evol Ecol. 1995;10:319–24. DOIGoogle Scholar
- Barnes AM, Quan TJ. Plague. In: Gorbach SL, Bartlett JG, Blacklow NR, editors. Infectious diseases. Philadelphia: W. B. Saunders Company; 1992:1285-91.
- Rasoamanana B, Leroy F, Raharimanana C, Chanteau S. Surveillance de la sensibilité aux antibiotiques des souches de Yersinia pestis à Madagascar de 1989 à 1995. Arch Inst Pasteur Madagascar. 1995;62:108–10.
- Frean JA, Arntzen L, Capper T, Bryskier A, Klugman KP. In vitro activities of 14 antibiotics against 100 human isolates of Yersinia pestis from a southern African plague focus. Antimicrob Agents Chemother. 1996;40:2646–7.PubMedGoogle Scholar
- Smith MD, Vinh DX, Hoa NTT, Wain J, Thung D, White NJ. In vitro antimicrobial susceptibilities of strains of Yersinia pestis. Antimicrob Agents Chemother. 1995;39:2153–4.PubMedGoogle Scholar
- Galimand M, Guiyoule A, Gerbaud G, Rasoamanana B, Chanteau S, Carniel E, Multidrug resistance in Yersinia pestis mediated by a transferable plasmid. N Engl J Med. 1997;337:677–80. DOIPubMedGoogle Scholar
- Bachman B. Derivations and genotypes of some mutant derivatives of Escherichia coli K-12. In: Neidhardt F, editor. Escherichia coli and Salmonella, cellular and molecular biology, 2nd ed. Washington, DC: ASM Press; 1996:2460-88.
- Yanisch-Perron C, Vieira J, Messing J. Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene. 1985;33:103–19. DOIPubMedGoogle Scholar
- Wood WB. Host specificity of DNA produced by Escherichia coli: bacterial mutations affecting the restriction and modification of DNA. J Mol Biol. 1966;16:118–33. DOIPubMedGoogle Scholar
- Ferber DM, Brubaker RR. Plasmids in Yersinia pestis. Infect Immun. 1981;31:839–41.PubMedGoogle Scholar
- Haas MJ, Dowding JE. Aminoglycoside-modifying enzymes. Methods Enzymol. 1975;43:611–28. DOIPubMedGoogle Scholar
- Sambrook J, Fritsch EF, Maniatis T. Molecular cloning: a laboratory manual. 2nd ed. Cold Spring Harbor (NY): Cold Spring Harbor Laboratory Press; 1989.
- DNA insertion elements, plasmids, and episomes. In: Bukhari AI, Shapiro JA, Adhya SL, editors. Cold Spring Harbor (NY): Cold Spring Harbor Laboratory Press; 1977. p. 601-38.
- Bercovier H, Mollaret HH, Alonso JM, Brault J, Fanning GR, Steigerwalt AG, Intra- and interspecies relatedness of Yersinia pestis by DNA hybridization and its relationship to Yersinia pseudotuberculosis. Curr Microbiol. 1980;4:225–9. DOIGoogle Scholar
- Shaw KJ, Rather PN, Hare RS, Miller GH. Molecular genetics of aminoglycoside resistance genes and familial relationships of the aminoglycoside-modifying enzymes. Microbiol Rev. 1993;57:138–63.PubMedGoogle Scholar
- Scholz P, Haring V, Wittmann-Liebold B, Ashman K, Bagdasarian M, Scherzinger E. Complete nucleotide sequence and gene organization of the broad-host-range plasmid RSF1010. Gene. 1989;75:271–88. DOIPubMedGoogle Scholar
- Chiou CS, Jones AL. Nucleotide sequence analysis of a transposon (Tn5393) carrying streptomycin resistance genes in Erwinia amylovora and other gram-negative bacteria. J Bacteriol. 1993;175:732–40.PubMedGoogle Scholar
- Sundin GW, Bender CL. Expression of strA-strB streptomycin resistance genes in Pseudomonas syringae and Xanthomonas campestris and characterization of IS6100 in X. campestris. Appl Environ Microbiol. 1995;61:2891–7.PubMedGoogle Scholar
- Thorsted PB, Macartney DP, Akhtar P, Haines AS, Ali N, Davidson P, Complete sequence of the IncP plasmid R751: implications for evolution and organisation of the IncP backbone. J Mol Biol. 1998;282:969–90. DOIPubMedGoogle Scholar
- Guiyoule A, Rasoamanana B, Buchrieser C, Michel P, Chanteau S, Carniel E. Recent emergence of new variants of Yersinia pestis in Madagascar. J Clin Microbiol. 1997;35:2826–33.PubMedGoogle Scholar
Page created: March 16, 2011
Page updated: March 16, 2011
Page reviewed: March 16, 2011
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.