Volume 7, Number 2—April 2001
THEME ISSUE
4th Decennial International Conference on Nosocomial and Healthcare-Associated Infections
State of the Art
Increasing Resistance to Vancomycin and Other Glycopeptides in Staphylococcus aureus
Table 2
Technique | Results | Comment |
---|---|---|
Broth microdilutionb | Vancomycin MIC = 8-16 µg/mL in Mueller-Hinton broth | Hold test for full 24 hours |
Brain heart infusion agar containing 6 µg/mL of vancomycin obtained from a commercial sourcec | Growth in 24 hours | One or more colonies is a positive result; use S. aureus ATCC 25923 as negative control, and Enterococcus faecalis ATCC51299 as positive control |
Etest | Vancomycin MIC > 6 µg/mL on Mueller-Hinton agar | Hold test for full 24 hour |
aAll three criteria must be met before an organism is defined as a glycopeptide-intermediate S. aureus. bCDC uses inhouse-prepared MIC plates; however, any full dilution range broth microdilution plates, such as MicroScan conventional panels or PASCO frozen MIC panels, if incubated at 35C for a full 24 hours, can be used. cSee reference 34 for explanation.
References
- Kauffman CA, Bradley SF. Epidemiology of community-acquired infection. In: Crossley KB, Archer GL, editors. The staphylococci in human disease. New York: Churchill Livingstone; 1997. p. 287-308.
- Cockerill FR III, Hughes JG, Vetter EA, Mueller RA, Weaver AL, Ilstrup DM, Analysis of 281,797 consecutive blood cultures performed over an eight-year period: trends in microorganisms isolated and the value of anaerobic culture of blood. Clin Infect Dis. 1997;24:403–18. DOIPubMedGoogle Scholar
- Weinstein MP, Towns ML, Quartey SM, Mirrett S, Reimer LG, Parmigiani G, The clinical significance of positive blood cultures in the 1990s: a prospective comprehensive evaluation of the microbiology, epidemiology, and outcome of bacteremia and fungemia in adults. Clin Infect Dis. 1997;24:584–602.PubMedGoogle Scholar
- Vallés J, León C, Alvarez-Lerma F. Nosocomial bacteremia in critically ill patients: a multicenter study evaluating epidemiology and prognosis. Clin Infect Dis. 1997;24:387–95. DOIPubMedGoogle Scholar
- Struelens MJ, Mertens R. the Groupement pour le Dépistage, l'Etude et la Prévention des Infections Hospitalières. National survey of methicillin-resistant Staphylococcus aureus. Eur J Clin Microbiol Infect Dis. 1994;13:56–63. DOIPubMedGoogle Scholar
- Maranan MC, Moreira B, Boyle-Vavra S, Daum RS. Antimicrobial resistance in staphylococci: epidemiology, molecular mechanisms, and clinical relevance. Infect Dis Clin North Am. 1997;11:813–49. DOIPubMedGoogle Scholar
- Ena J, Dick RW, Jones RN, Wenzel RP. The epidemiology of intravenous vancomycin usage in a university hospital: a 10 year study. JAMA. 1993;269:598–602. DOIPubMedGoogle Scholar
- Kernodle DS, Kaiser AB. Postoperative infections and antimicrobial prophylaxis. In: Mandell GL, Bennett JE, Dolin R, editors. Principles and practice of infectious diseases. 4th ed. New York: Churchill Livingstone; 1996. p. 2742-56.
- Kirst HA, Thompson DG, Nicas TI. Historical yearly usage of vancomycin. Antimicrob Agents Chemother. 1998;42:1303–4.PubMedGoogle Scholar
- Fridkin SK, Edwards JR, Pichette SC, Pryor ER, McGowan JE Jr, Tenover FC, Determinants of vancomycin use in adult intensive care units in 41 United States Hospitals. Clin Infect Dis. 1999;28:1119–25. DOIPubMedGoogle Scholar
- Hiramatsu K, Hanaki H, Ino T, Yabuta K, Oguri T, Tenover FC. Methicillin-resistant Staphylococcus aureus clinical strain with reduced vancomycin susceptibility. J Antimicrob Chemother. 1997;40:135–6. DOIPubMedGoogle Scholar
- Centers for Disease Control and Prevention. Staphylococcus aureus with reduced susceptibility to vancomycin-United States, 1997. MMWR Morb Mortal Wkly Rep. 1997;46:765–6.PubMedGoogle Scholar
- Tenover FC. VRSA, VISA, and GISA: the dilemma behind the name game. Clin Microbiol Newsl. 2000;22:49–53. DOIGoogle Scholar
- Johnson AP. Intermediate vancomycin resistance in Staphylococcus aureus: a major threat or a minor inconvenience? J Antimicrob Chemother. 1998;42:289–91. DOIPubMedGoogle Scholar
- Waldvogel FA. New resistance in Staphylococcus aureus. N Engl J Med. 1999;340:556–7. DOIPubMedGoogle Scholar
- National Committee for Clinical Laboratory Standards. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically. 5th ed. Approved standard M7-A5. Wayne (PA): The Committee; 2000.
- National Committee for Clinical Laboratory Standards. Performance standards for antimicrobial disk susceptibility tests. 7th ed. Approved standard M2-A7. Wayne (PA): The Committee; 2000.
- Tenover FC, Lancaster MV, Hill BC, Steward C, Stocker S, Hancock G, Characterization of staphylococci with reduced susceptibilities to vancomycin and other glycopeptides. J Clin Microbiol. 1998;36:1020–7.PubMedGoogle Scholar
- Goldstein F, Soussy C-J, Thabaut A. Report of the Comité de l'Antibiogramme de la Société Française de Microbiologie. Definition of the clinical antibacterial spectrum of activity. Clin Microbiol Infect. 1996;2:S40–9. DOIPubMedGoogle Scholar
- Working Party of the British Society for Antimicrobial Chemotherapy. Breakpoints in in-vitro antibiotic susceptibility testing. J Antimicrob Chemother. 1988;21:701–10. DOIPubMedGoogle Scholar
- Hiramatsu K, Aritaka N, Hanaki H, Kawasaki S, Hosoda Y, Hori S, Dissemination in Japanese hospitals of strains of Staphylococcus aureus heterogeneously resistant to vancomycin. Lancet. 1997;350:1670–3. DOIPubMedGoogle Scholar
- Howe RA, Bowker KE, Walsh TR, Feest TG, MacGowan AP. Vancomycin-resistant Staphylococcus aureus. Lancet. 1998;351:602. DOIPubMedGoogle Scholar
- Wong SS, Ho PL, Woo PC, Yuen KY. Bacteremia caused by staphylococci with inducible vancomycin heteroresistance. Clin Infect Dis. 1999;29:760–7. DOIPubMedGoogle Scholar
- Bierbaum G, Fuchs K, Lenz W, Szekat C, Sahl H-G. Presence of Staphylococcus aureus with reduced susceptibility to vancomycin in Germany. Eur J Clin Microbiol Infect Dis. 1999;18:691–6. DOIPubMedGoogle Scholar
- Kantzanou M, Tassios PT, Tseleni-Kotsovili A, Legakis NJ, Vatopoulos AC. Reduced susceptibility to vancomycin of nosocomial isolates of methicillin-resistant Staphylococcus aureus. J Antimicrob Chemother. 1999;43:729–31. DOIPubMedGoogle Scholar
- Geisel R, Schmitz F-J, Thomas L, Berns G, Zetsche O, Ulrich B, Emergence of heterogeneous intermediate vancomycin resistance in Staphylococcus aureus isolates in the Düsseldorf area. J Antimicrob Chemother. 1999;43:846–8. DOIPubMedGoogle Scholar
- Smith T, Pearson ML, Wilcox KR, Cruz C, Lancaster ML, Robinson-Dunn B, Emergence of vancomycin resistance in Staphylococcus aureus: epidemiology and clinical significance. N Engl J Med. 1999;340:493–501. DOIPubMedGoogle Scholar
- Rotun SS, McMath V, Schoonmaker DJ, Maupin PS, Tenover FC, Hill BC, Staphylococcus aureus with reduced susceptibility to vancomycin isolated from a patient with fatal bacteremia. Emerg Infect Dis. 1999;5:147–9. DOIPubMedGoogle Scholar
- Centers for Disease Control and Prevention. Staphylococcus aureus with reduced susceptibility to vancomycin-Illinois, 1999. MMWR Morb Mortal Wkly Rep. 2000;48:1165–7.PubMedGoogle Scholar
- Ploy MC, Grélaud C, Martin C, de Lumley L, Denis F. First clinical isolate of vancomycin-intermediate Staphylococcus aureus in a French hospital. Lancet. 1998;351:1212. DOIPubMedGoogle Scholar
- Ariza J, Pujol M, Cabo J, Pena C, Fernandez N, Linares J, Vancomycin in surgical infections due to methicillin-resistant Staphylococcus aureus with heterogeneous resistance to vancomycin. Lancet. 1999;353:1587–8. DOIPubMedGoogle Scholar
- Hood J, Cosgrove B, Curran E, Lockhart M, Thakker B, Gemmell C, Vancomycin-intermediate resistant Staphylococcus aureus in Scotland. Abstracts of the 4th Decennial International Conference on Nosocomial and HealthCare-Associated Infections, Mar 2000, Atlanta, Georgia. Atlanta: Centers for Disease Control and Prevention; 2000.
- Climo MW, Patron RL, Archer GL. Combinations of vancomycin and beta-lactams are synergistic against staphylococci with reduced susceptibility to vancomycin. Antimicrob Agents Chemother. 1999;43:1747–53.PubMedGoogle Scholar
- Sieradzki K, Roberts RB, Haber SW, Tomasz A. The development of vancomycin resistance in a patient with methicillin-resistant Staphylococcus aureus infection. N Engl J Med. 1999;340:517–23. DOIPubMedGoogle Scholar
- Pfeltz RF, Singh VK, Schmidt JL, Batten MA, Baranyk CS, Nadakavukaren MJ, Characterization of passage-selected vancomycin-resistant Staphylococcus aureus strains of diverse parental backgrounds. Antimicrob Agents Chemother. 2000;44:294–303. DOIPubMedGoogle Scholar
- Boyle-Vavra S, Berke SK, Lee JC, Daum RS. Reversion of glycopeptide resistance phenotype in Staphylococcus aureus clinical isolates. Antimicrob Agents Chemother. 2000;44:272–7. DOIPubMedGoogle Scholar
- Hanaki H, Kuwahara-Arai K, Boyle-Vavra S, Daum RS, Labischinski H, Hiramatsu K. Activated cell-wall synthesis is associated with vancomycin resistance in methicillin-resistant Staphylococcus aureus clinical strains Mu3 and Mu50. J Antimicrob Chemother. 1998;42:199–209. DOIPubMedGoogle Scholar
- Hanaki H, Labischinski H, Inaba Y, Kondo N, Murakami H, Hiramatsu K. Increase in glutamine-non-amidated muropeptides in the peptidoglycan of vancomycin-resistant Staphylococcus aureus strain Mu50. J Antimicrob Chemother. 1998;42:315–20. DOIPubMedGoogle Scholar
- Fitch L, Johnson AP. Reduced susceptibility to teicoplanin in a methicillin-resistant strain of Staphylococcus aureus. J Antimicrob Chemother. 1998;41:578. DOIPubMedGoogle Scholar
- Hubert SK, Mohammed JM, Fridkin SK, Gaynes RP, McGowan JE Jr, Tenover FC. Glycopeptide-intermediate Staphylococcus aureus: evaluation of a novel screening method and results of a survey of selected U.S. Hospitals. J Clin Microbiol. 1999;37:3590–3.PubMedGoogle Scholar
- Centers for Disease Control and Prevention. Laboratory capacity to detect antimicrobial resistance, 1998. MMWR Morb Mortal Wkly Rep. 2000;48:1167–71.PubMedGoogle Scholar
- Zimakoff J, Pedersen FB, Bergen L, Baagø-Nielsen J, Daldorph B, Espersens F, Staphylococcus aureus carriage and infections among patients in four haemo- and peritoneal-dialysis center in Denmark. J Hosp Infect. 1996;33:289–300. DOIPubMedGoogle Scholar
- Centers for Disease Control and Prevention. Interim guideline for prevention and control of staphylococcal infection associated with reduced susceptibility to vancomycin. MMWR Morb Mortal Wkly Rep. 1997;46:626–8, 635–6.PubMedGoogle Scholar
- Centers for Disease Control and Prevention. Recommendations for preventing the spread of vancomycin resistance: recommendations of the Hospital Infection Control Practices Advisory Committee (HICPAC). Morb Mortal Wkly Rep MMWR 1995;44 (no. RR-12).
- Edmonds MB, Wenzel RP, Pasculle AW. Vancomycin-resistant Staphylococcus aureus: perspectives on measures needed for control. Ann Intern Med. 1996;124:329–34.PubMedGoogle Scholar
- Franchi D, Climo MW, Wong AHM, Edmond MB, Wenzel RP. Seeking vancomycin resistant Staphylococcus aureus among patients with vancomycin-resistant enterococci. Clin Infect Dis. 1999;29:1556–8. DOIPubMedGoogle Scholar
- Sieradzki K, Roberts R, Serur D, Hargrave J, Tomasz A. Heterogeneously vancomycin-resistant Staphylococcus epidermidis strain causing recurrent peritonitis in a dialysis patient during vancomycin therapy. J Clin Microbiol. 1999;37:39–44.PubMedGoogle Scholar
- Pagano L, Tacconelli E, Tumbarello M, Laurenti L, Mele L, Spanu T, Teicoplanin-resistant coagulase-negative staphylococcal bacteraemia in patients with haemotologic malignancies: a problem of increasing importance. J Antimicrob Chemother. 1997;40:738–40. DOIPubMedGoogle Scholar
Page created: April 17, 2012
Page updated: April 17, 2012
Page reviewed: April 17, 2012
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.