Volume 9, Number 10—October 2003
Dispatch
Wild-type Measles Virus in Brain Tissue of Children with Subacute Sclerosing Panencephalitis, Argentina
Figure 2
References
- Cutts FT, Henao-Restrepo A, Olive JM, Cutts FT, Henao-Restrepo A, Olive JM. Measles elimination: progress and challenges. Vaccine. 1999;17(Suppl 3):S47–52. DOIPubMedGoogle Scholar
- Hersh BS, Tambini G, Nogueira AC, Carrasco P, de Quadros C. Review of regional measles surveillance data in the Americas, 1996–99. Lancet. 2000;355:1943–8. DOIPubMedGoogle Scholar
- Norrby E, Kristensson K. Measles virus in the brain. Brain Res Bull. 1997;44:213–20. DOIPubMedGoogle Scholar
- World Health Organization. Nomenclature for describing the genetic characteristics of wild-type measles viruses (update). Part I. Wkly Epidemiol Rec. 2001;76:242–7.PubMedGoogle Scholar
- Cattaneo R, Schmid A, Spielhofer P, Kaelin K, Baczko K, ter Meulen V, Mutated and hypermutated genes of persistent measles viruses which caused lethal human brain diseases. Virology. 1989;173:415–25. DOIPubMedGoogle Scholar
- Baczko K, Liebert UG, Billeter M, Cattaneo R, Budka H, ter Meulen V. Expression of defective measles virus genes in brain tissues of patients with subacute sclerosing panencephalitis. J Virol. 1986;59:472–8.PubMedGoogle Scholar
- Rima BK, Earle AP, Baczko K, ter Meulen V, Liebert UG, Carstens, et al. Sequence divergence of measles virus haemagglutinin during natural evolution and adaptation to cell culture. J Gen Virol. 1997;78:97–106.PubMedGoogle Scholar
- Gark RK. Subacute sclerosing panencephalitis. Postgrad Med J. 2002;78:63–70. DOIPubMedGoogle Scholar
- Barrero PR, Zandomeni RO, Mistchenko AS. Measles virus circulation in Argentina: 1991–1999. Arch Virol. 2001;146:815–23. DOIPubMedGoogle Scholar
- Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 1997;24:4876–82. DOIGoogle Scholar
- Felsestein J. PHYLIP- Phylogeny inference package. Cladistics. 1989;5:164–6.
- Bilkis MD, Barrero PR, Mistchenko AS. Measles resurgence in Argentina: 1997–98 outbreak. Epidemiol Infect. 2000;124:289–93. DOIPubMedGoogle Scholar
- Backzo K, Lampe J, Liebert UG, Brinckmann U, ter Meulen V, Pardowitz I, Clonal expansion of hypermutated measles virus in a SSPE brain. Virology. 1993;197:188–95. DOIPubMedGoogle Scholar
- Liebert UG, Flanagan SG, Löffler S. Antigenic determinants of measles virus hemagglutinin associated with neurovirulence. J Virol. 1994;68:1486–93.PubMedGoogle Scholar
- Ziegler D, Fournier P, Berbers GAH, Steuer H, Wiesmüller KH, Fleckenstein B, Protection against measles virus encephalitis by monoclonal antibodies binding to a cysteine loop domain of the H protein mimicked by peptides which are not recognised by maternal antibodies. J Gen Virol. 1996;77:2479–89. DOIPubMedGoogle Scholar
- Buckland R, Giraldon P, Wild TF. Expression of measles virus nucleoprotein in Escherichia coli: use of deletion mutants to locate the antigenic sites. J Gen Virol. 1989;70:435–41. DOIPubMedGoogle Scholar
- Oliveira MI, Rota PA, Suely PC, Figueiredo CA, Afonso AMS, Theobaldo M, Genetic homogeneity of measles viruses associated with a measles outbreak, São Paulo, Brazil, 1997. Emerg Infect Dis. 2002;8:808–13.PubMedGoogle Scholar
- Jin L, Beard S, Hunjan R, Brown DW, Miller E. Characterization of measles virus strains causing SSPE: a study of 11 cases. J Neurovirol. 2002;8:335–44. DOIPubMedGoogle Scholar
- Miki K, Komase K, Mgone CS, Kawanishi R, Iijima M, Mgone JM, Molecular analysis of measles virus genome derived from SSPE and acute measles patients in Papua, New Guinea. J Med Virol. 2002;68:105–12. DOIPubMedGoogle Scholar
- Lawrence DMP, Vaughn MM, Belman AR, Cole JS, Rall GF. Immune response-mediated protection of adult but not neonatal mice from neuron-restricted measles virus infection and central nervous system disease. J Virol. 1999;73:1795–801.PubMedGoogle Scholar
Page created: January 10, 2011
Page updated: January 10, 2011
Page reviewed: January 10, 2011
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.