Volume 9, Number 4—April 2003
Perspective
Bacterial Resistance to Penicillin G by Decreased Affinity of Penicillin-Binding Proteins: A Mathematical Model
Figure 2
References
- Grebe T, Hakenbeck R. Penicillin-binding proteins 2b and 2x of Streptococcus pneumoniae are primary resistance determinants for different classes of beta-lactam antibiotics. Antimicrob Agents Chemother. 1996;40:829–34.PubMedGoogle Scholar
- Reichmann P, Konig A, Marton A, Hakenbeck R. Penicillin-binding proteins as resistance determinants in clinical isolates of Streptococcus pneumoniae. Microb Drug Resist. 1996;2:177–81. DOIPubMedGoogle Scholar
- Mendelman PM, Campos J, Chaffin DO, Serfass DA, Smith AL, Saez-Nieto JA. Relative penicillin G resistance in Neisseria meningitidis and reduced affinity of penicillin-binding protein 3. Antimicrob Agents Chemother. 1988;32:706–9.PubMedGoogle Scholar
- Geslin P, Fremaux A, Sissia G, Spicq C. [Streptococcus pneumoniae: serotypes, invasive and antibiotic resistant strains. Current situation in France]. Presse Med. 1998;27(Suppl 1):21–7.PubMedGoogle Scholar
- National Committee for Clinical and Laboratory Standards. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; approved standard M7-A5. 5th ed. Vol. 14. Wayne (PA): The Committee; 2000.
- Antignac A, Alonso JM, Taha MK. Le point sur la résistance de Neisseria meningitidis aux antibiotiques, d'après les souches étudiées au Centre National de Référence des Méningocoques en 1998. Antibiotiques (Paris). 2000;2:241–5.
- Feikin DR, Schuchat A, Kolczak M, Barrett NL, Harrison LH, Lefkowitz L, Mortality from invasive pneumococcal pneumonia in the era of antibiotic resistance, 1995–1997. Am J Public Health. 2000;90:223–9. DOIPubMedGoogle Scholar
- Raymond J, Le Thomas I, Moulin F, Commeau A, Gendrel D, Berche P. Sequential colonization by Streptococcus pneumoniae of healthy children living in an orphanage. J Infect Dis. 2000;181:1983–8. DOIPubMedGoogle Scholar
- Cartwright K. Meningococcal disease. Chichester (NY): Wiley; 1995.
- Obaro SK, Monteil MA, Henderson DC. The pneumococcal problem. BMJ. 1996;312:1521–5.PubMedGoogle Scholar
- Austin DJ, Kristinsson KG, Anderson RM. The relationship between the volume of antimicrobial consumption in human communities and the frequency of resistance [see comments]. Proc Natl Acad Sci U S A. 1999;96:1152–6. DOIPubMedGoogle Scholar
- Bonhoeffer S, Lipsitch M, Levin BR. Evaluating treatment protocols to prevent antibiotic resistance. Proc Natl Acad Sci U S A. 1997;94:12106–11. DOIPubMedGoogle Scholar
- Austin DJ, Anderson RM. Studies of antibiotic resistance within the patient, hospitals and the community using simple mathematical models. Philos Trans R Soc Lond B Biol Sci. 1999;354:721–38. DOIPubMedGoogle Scholar
- Bowler LD, Zhang QY, Riou JY, Spratt BG. Interspecies recombination between the penA genes of Neisseria meningitidis and commensal Neisseria species during the emergence of penicillin resistance in N. meningitidis: natural events and laboratory simulation. J Bacteriol. 1994;176:333–7.PubMedGoogle Scholar
- Spratt BG, Bowler LD, Zhang QY, Zhou J, Smith JM. Role of interspecies transfer of chromosomal genes in the evolution of penicillin resistance in pathogenic and commensal Neisseria species. J Mol Evol. 1992;34:115–25. DOIPubMedGoogle Scholar
- Tomasz A. Streptococcus pneumoniae: molecular biology and mechanisms of disease. Larchmont (NY): Mary Ann Liebert, Inc.; 2000.
- Hakenbeck R, Kaminski K, Konig A, van der Linden M, Paik J, Reichmann P, Penicillin-binding proteins in beta-lactam-resistant Streptococcus pneumoniae. Microb Drug Resist. 1999;5:91–9. DOIPubMedGoogle Scholar
- Sanders CC, Sanders WE Jr, Goering RV, Werner V. Selection of multiple antibiotic resistance by quinolones, beta-lactams, and aminoglycosides with special reference to cross-resistance between unrelated drug classes. Antimicrob Agents Chemother. 1984;26:797–801.PubMedGoogle Scholar
- Prellner K, Hermansson A, White P, Melhus A, Briles D. Immunization and protection in pneumococcal otitis media studied in a rat model. Microb Drug Resist. 1999;5:73–82. DOIPubMedGoogle Scholar
- Guillemot D, Carbon C, Vauzelle-Kervroedan F, Balkau B, Maison P, Bouvenot G, Inappropriateness and variability of antibiotic prescription among French office-based physicians. J Clin Epidemiol. 1998;51:61–8. DOIPubMedGoogle Scholar
- Guillemot D, Maison P, Carbon C, Balkau B, Vauzelle-Kervroedan F, Sermet C, Trends in antimicrobial drug use in the community—France, 1981–1992. J Infect Dis. 1998;177:492–7. DOIPubMedGoogle Scholar
- Geslin P, Fremaux A, Sissia G. [Epidemiology of Streptococcus pneumoniae antibiotic resistance]. Arch Pediatr. 1996;3:93s–5s. DOIPubMedGoogle Scholar
- Sahm DF, Jones ME, Hickey ML, Diakun DR, Mani SV, Thornsberry C. Resistance surveillance of Streptococcus pneumoniae, Haemophilus influenzae and Moraxella catarrhalis isolated in Asia and Europe, 1997–1998. J Antimicrob Chemother. 2000;45:457–66. DOIPubMedGoogle Scholar
- Soh SW, Poh CL, Lin RV. Serotype distribution and antimicrobial resistance of Streptococcus pneumoniae isolates from pediatric patients in Singapore. Antimicrob Agents Chemother. 2000;44:2193–6. DOIPubMedGoogle Scholar
- Wang H, Huebner R, Chen M, Klugman K. Antibiotic susceptibility patterns of Streptococcus pneumoniae in china and comparison of MICs by agar dilution and E-test methods. Antimicrob Agents Chemother. 1998;42:2633–6.PubMedGoogle Scholar
- Blower SM. H. D. Sensitivity and uncertainty analysis of complex models of disease transmission: an HIV model, as an example. Int Stat Rev. 1994;2:229–43. DOIGoogle Scholar
- Hakenbeck R, Grebe T, Zahner D, Stock JB. Beta-lactam resistance in Streptococcus pneumoniae: penicillin-binding proteins and non-penicillin-binding proteins. Mol Microbiol. 1999;33:673–8. DOIPubMedGoogle Scholar
- Orus P, Vinas M. Mechanisms other than penicillin-binding protein-2 alterations may contribute to moderate penicillin resistance in Neisseria meningitidis. Int J Antimicrob Agents. 2001;18:113–9. DOIPubMedGoogle Scholar
- Spratt BG, Zhang QY, Jones DM, Hutchison A, Brannigan JA, Dowson CG. Recruitment of a penicillin-binding protein gene from Neisseria flavescens during the emergence of penicillin resistance in Neisseria meningitidis. Proc Natl Acad Sci U S A. 1989;86:8988–92. DOIPubMedGoogle Scholar
- Levin BR, Stewart FM, Rice VA. The kinetics of conjugative plasmid transmission: fit of a simple mass action model. Plasmid. 1979;2:247–60. DOIPubMedGoogle Scholar
- Andersson DI, Levin BR. The biological cost of antibiotic resistance. Curr Opin Microbiol. 1999;2:489–93. DOIPubMedGoogle Scholar
- Lipsitch M. Measuring and interpreting associations between antibiotic use and penicillin resistance in Streptococcus pneumoniae. Clin Infect Dis. 2001;32:1044–54. DOIPubMedGoogle Scholar
- Klugman KP. Efficacy of pneumococcal conjugate vaccines and their effect on carriage and antimicrobial resistance. Lancet. 2001;1:85–91. DOIPubMedGoogle Scholar
- Ramsay ME, Andrews N, Kaczmarski EB, Miller E. Efficacy of meningococcal serogroup C conjugate vaccine in teenagers and toddlers in England. Lancet. 2001;357:195–6. DOIPubMedGoogle Scholar
- Preventing pneumococcal disease among infants and young children: recommendations of the Advisory Committee on Immunization Practices (ACIP). MMWR Recomm Rep. 2000;49:1–35.PubMedGoogle Scholar
- Meningococcal disease and college students: recommendations of the Advisory Committee on Immunization Practices (ACIP). MMWR Recomm Rep. 2000;49:13–20.PubMedGoogle Scholar
- Prevention and control of meningococcal disease: recommendations of the Advisory Committee on Immunization Practices (ACIP). MMWR Recomm Rep. 2000;49:1–10.PubMedGoogle Scholar
- Press W, Teukolsky S, Vetterling W, Flannery B. Numerical recipes in C. 2nd edition. Cambridge: Cambridge University Press; 1992.
- Gillespie DT. Exact stochastic simulation of coupled chemical reactions. J Phys Chem. 1977;81:2340–61. DOIGoogle Scholar
Page created: December 08, 2010
Page updated: December 08, 2010
Page reviewed: December 08, 2010
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.