Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 10, Number 7—July 2004
Dispatch

Phylogenetic Analysis of West Nile Virus, Nuevo Leon State, Mexico

Bradley J. Blitvich*, Ildefonso Fernández-Salas†, Juan F. Contreras-Cordero†, María A. Loroño-Pino*, Nicole L. Marlenee*, Francisco J. Díaz*, José I. González-Rojas†, Nelson Obregón-Martínez‡, Jorge A. Chiu-García‡, William C. Black*, and Barry J. Beaty*Comments to Author 
Author affiliations: *College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado. USA; †Universidad Autonoma de Nuevo Leon, Apartado, San Nicolas de los Garza, Nuevo Leon, Mexico; ‡Secretaria de Salud de Nuevo Leon, Nuevo Leon, Mexico

Main Article

Figure 1

Phylogenetic analysis of West Nile virus (WNV) from Nuevo Leon State, Mexico. Phylogenies were estimated using the program MRBAYES, version 2.0 (15). Sampling of trees from the posterior probability distribution used the Metropolis-coupled Markov chain Monte Carlo algorithm to allow running of multiple Markov chains. A run with four chains was performed for 90,000 generations, under a general time-reversible model (all six types of substitutions occur at different rates) with parameter value est

Figure 1. Phylogenetic analysis of West Nile virus (WNV) from Nuevo Leon State, Mexico. Phylogenies were estimated using the program MRBAYES, version 2.0 (15). Sampling of trees from the posterior probability distribution used the Metropolis-coupled Markov chain Monte Carlo algorithm to allow running of multiple Markov chains. A run with four chains was performed for 90,000 generations, under a general time-reversible model (all six types of substitutions occur at different rates) with parameter value estimation for base frequencies, substitution matrix values, and rate heterogeneity. Rate heterogeneity was estimated using a γ distribution for the variable sites and assuming a certain portion of sites to be invariable. The burn-in time was 70,000 generations. The phylogenetic analysis is based on the 2004-nt fragment encoding the complete prM-E genes of 49 WNVs. The tree is rooted by using the prototype WNV strain from Uganda in 1937 (GenBank accession no. M10103) as an outgroup. Values above some branches represent the percent support by parsimony bootstrap analysis. Values below some branches represent the percentage support by distance bootstrap analysis. The bootstrap confidence estimates are based on 1,000 replicates. The WNV from Nuevo Leon State is encapsulated.

Main Article

References
  1. Nash  D, Mostashari  F, Fine  A, Miller  J, O’Leary  D, Murray  K, The outbreak of West Nile virus infection in the New York City area in 1999. N Engl J Med. 2001;344:180714. DOIPubMedGoogle Scholar
  2. Centers for Disease Control and Prevention. West Nile virus—statistics, surveillance and control, September 30, 2003. [cited 2004 May 14]. Available from: http://www.cdc.gov/ncidod/dvbid/westnile/surv&control.htm
  3. Health Canada. Population and Public Health Branch WNV surveillance updates, September 30, 2003. [cited 2004 May 14]. Available from: http://www.hc-sc.gc.ca/pphb-dgspsp/wnv-vwn/mon_e.html#sitrep.
  4. Blitvich  BJ, Fernández-Salas  I, Contreras-Cordero  JF, Marlenee  NL, González-Rojas  JI, Komar  N, Serologic evidence of West Nile virus infection in horses, Coahuila State, Mexico. Emerg Infect Dis. 2003;9:8536.PubMedGoogle Scholar
  5. Estrada-Franco  JG, Navarro-Lopez  R, Beasley  DWC, Coffey  L, Carrara  A-S, Travassos da Rosa  A, West Nile virus in Mexico: serologic evidence of widespread circulation since July 2002. Emerg Infect Dis. 2003;9:16047.PubMedGoogle Scholar
  6. Loroño-Pino  MA, Blitvich  BJ, Farfán-Ale  JA, Puerto  FI, Blanco  JM, Marlenee  NL, Serologic evidence for West Nile virus infection in horses, Yucatán State, México. Emerg Infect Dis. 2003;9:8579.PubMedGoogle Scholar
  7. Ulloa  A, Langevin  SA, Mendez-Sanchez  JD, Arredondo-Jimenez  JI, Raetz  JL, Powers  AM, Serologic survey of domestic animals for zoonotic arbovirus infections in the Lacandón Forest region of Chiapas, Mexico. Vector Borne Zoonotic Dis. 2003;3:39. DOIPubMedGoogle Scholar
  8. Lanciotti  RS, Roehrig  JT, Deubel  V, Smith  J, Parker  M, Steele  K, Origin of the West Nile virus responsible for an outbreak of encephalitis in the northeastern United States. Science. 1999;286:23337. DOIPubMedGoogle Scholar
  9. Lanciotti  RS, Ebel  GD, Deubel  V, Kerst  AJ, Murri  S, Meyer  R, Complete genome sequences and phylogenetic analysis of West Nile virus strains isolated from the United States, Europe, and the Middle East. Virology. 2002;298:96105. DOIPubMedGoogle Scholar
  10. Briese  T, Glass  WG, Lipkin  WI. Detection of West Nile virus sequences in cerebrospinal fluid. Lancet. 2000;355:16145. DOIPubMedGoogle Scholar
  11. Anderson  JF, Vossbrinck  CR, Andreadis  TG, Iton  A, Beckwith  WH, Mayo  DR. A phylogenetic approach to following West Nile virus in Connecticut. Proc Natl Acad Sci U S A. 2001;98:128859. DOIPubMedGoogle Scholar
  12. Ebel  GD, Dupuis  AP, Ngo  K, Nicholas  D, Kauffman  E, Jones  SA, Partial genetic characterization of West Nile virus strains, New York State, 2000. Emerg Infect Dis. 2001;7:6503. DOIPubMedGoogle Scholar
  13. Beasley  DW, Davis  CT, Guzman  H, Vanlandingham  DL, Travassos da Rosa  AP, Parsons  RE, Limited evolution of West Nile virus has occurred during its southwesterly spread in the United States. Virology. 2003;309:1905. DOIPubMedGoogle Scholar
  14. Davis  TC, Beasley  DWC, Guzman  H, Raj  P, D’Anton  M, Novak  RJ, Genetic variation among temporally and geographically distinct West Nile virus isolates collected in the United States during 2001 and 2002. Emerg Infect Dis. 2003;9:14239.PubMedGoogle Scholar
  15. Huelsenbeck  JP, Ronquist  FR. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics. 2001;17:7545. DOIPubMedGoogle Scholar
  16. Rappole  JH, Hubalek  Z. Migratory birds and West Nile virus. J Appl Microbiol. 2003;94(Suppl):47S58S. DOIPubMedGoogle Scholar
  17. Fernández-Salas  I, Contreras-Cordero  JF, Blitvich  BJ, González-Rojas  JI, Cavazos-Alvarez  A, Marlenee  NL, Serologic evidence of West Nile virus infection in birds, Tamaulipas State, México. Vector Borne Zoonotic Dis. 2003;3:20913. DOIPubMedGoogle Scholar
  18. Farfán-Ale  JA, Blitvich  BJ, Loroño-Pino  MA, Marlenee  NL, Rosado-Paredes  EP, García-Rejón  JE, Longitudinal studies of West Nile virus infection in avians, Yucatán State, México. Vector Borne Zoonotic Dis. 2004;4:314. DOIPubMedGoogle Scholar

Main Article

Page created: January 27, 2011
Page updated: January 27, 2011
Page reviewed: January 27, 2011
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.
file_external