Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 11, Number 2—February 2005
Research

Carbapenemase-producing Enterobacteriaceae, U.S. Rivers

Cécile Aubron*, Laurent Poirel*, Ronald J Ash†, and Patrice Nordmann*Comments to Author 
Author affiliations: *University Paris XI, Paris, France; †Washburn University, Topeka, Kansas, USA

Main Article

Table 2

MICs (mg/L) of β-lactams for several carbapenemase producers and reference strain Escherichia coli DH10B

β-Lactam(s)* Enterobacter asburiae MS7† E. cloacae 1413B† Escherichia coli DH10B (pNat)‡ E. coli DH10B 
(pIMI-2)‡ E. coli DH10B
Amoxicillin >512 >512 >512 >512 4
Amoxicillin + CLA >512 >512 >512 >512 4
Ticarcillin 128 >256 128 256 4
Ticarcillin + CLA 16 >256 16 32 4
Piperacillin 16 >256 8 128 2
Piperacillin + TZB 4 >256 2 16 2
Cephalothin 512 >256 64 512 4
Cefotaxime 0.06 1 0.06 1 0.06
Ceftazidime 0.12 2 0.06 0.5 0.25
Aztreonam 4 8 4 64 0.12
Imipenem >64 >64 16 >64 0.06
Meropenem 32 4 2 32 0.06

*CLA, clavulanic acid at a fixed concentration of 2 mg/L; TZB, tazobactam at a fixed concentration of 4 mg/L.
Enterobacter asburiae MS7 produces acquired β-lactamase IMI-2, whereas E. cloacae 1413B produces acquired β-lactamases TEM-1 and IMI-1 (5).
‡Natural plasmid pNat harbors the blaIMI-2 gene, whereas pIMI-2 is a recombinant plasmid that has the same β-lactamase gene.

Main Article

References
  1. Lee  EH, Nicolas  MH, Kitzis  MD, Pialoux  G, Collatz  E, Gutmann  L. Association of two resistance mechanisms in a clinical isolate of Enterobacter cloacae with high level resistance to imipenem. Antimicrob Agents Chemother. 1991;35:10938.PubMedGoogle Scholar
  2. Nordmann  P, Poirel  L. Emerging carbapenemases in gram-negative aerobes. Clin Microbiol Infect. 2002;8:32131. DOIPubMedGoogle Scholar
  3. De Champs  C, Henquell  C, Guelon  D, Sirot  D, Gazuy  N, Sirot  J. Clinical and bacteriological study of nosocomial infections due to Enterobacter aerogenes resistant to imipenem. J Clin Microbiol. 1993;31:1237.PubMedGoogle Scholar
  4. Nordmann  P, Mariotte  S, Naas  T, Labia  R, Nicolas  MH. Biochemical properties of a carbapenem-hydrolyzing β-lactamase from Enterobacter cloacae and cloning of the gene into Escherichia coli. Antimicrob Agents Chemother. 1993;37:93946.PubMedGoogle Scholar
  5. Rasmussen  BA, Bush  K, Keeney  D, Yang  Y, Hare  R, O’Gara  C, Characterization of IMI-1 β-lactamase, a class A carbapenem-hydrolyzing enzyme from Enterobacter cloacae. Antimicrob Agents Chemother. 1996;40:20806.PubMedGoogle Scholar
  6. Naas  T, Livermore  DM, Nordmann  P. Characterization of an LysR family protein, SmeR from Serratia marcescens S6, its effect on expression of the carbapenem-hydrolyzing β-lactamase Sme-1, and comparison of this regulator with other β-lactamase regulators. Antimicrob Agents Chemother. 1995;39:62937.PubMedGoogle Scholar
  7. Naas  T, Vandel  L, Sougakoff  W, Livermore  DM, Nordmann  P. Cloning and sequence analysis of the gene for a carbapenem-hydrolyzing class A β-lactamase, Sme-1, from Serratia marcescens S6. Antimicrob Agents Chemother. 1994;38:126270.PubMedGoogle Scholar
  8. Naas  T, Nordmann  P. Analysis of a carbapenem-hydrolyzing class A β-lactamase from Enterobacter cloacae and of its LysR-type regulatory protein. Proc Natl Acad Sci U S A. 1994;91:76937. DOIPubMedGoogle Scholar
  9. Queenan  AM, Torres-Vierra  C, Gold  HS, Carmeli  Y, Eliopoulos  GM, Moellering  RC Jr, SME-type carbapenem-hydrolyzing class A β-lactamases from geographically diverse Serratia marcescens strains. Antimicrob Agents Chemother. 2000;44:30359. DOIPubMedGoogle Scholar
  10. Ambler  RP, Coulson  AF, Frère  JM, Ghuyssen  JM, Joris  B, Forsman  M, A standard numbering scheme for the class A beta-lactamase. Biochem J. 1991;276:26972.PubMedGoogle Scholar
  11. Miriagou  V, Tzouvelekis  LS, Rossiter  S, Tzelepi  E, Angulo  FJ, Whichard  JM. Imipenem resistance in Salmonella clinical strain due to plasmid-mediated class A carbapenemase KPC-2. Antimicrob Agents Chemother. 2003;47:1297300. DOIPubMedGoogle Scholar
  12. Yigit  H, Queenan  AM, Anderson  GJ, Domenech-Sanchez  A, Biddle  JW, Steward  CD, Novel carbapenem-hydrolyzing β-lactamase, KPC-1, from a carbapenem-resistant strain of Klebsiella pneumoniae. Antimicrob Agents Chemother. 2001;45:115161. DOIPubMedGoogle Scholar
  13. Smith-Moland  E, Black  JA, Ourada  J, Reisbig  MD, Hanson  ND, Thomson  KS. Occurrence of newer β-lactamases in Klebsiella pneumoniae isolates from 24 U.S. hospitals. Antimicrob Agents Chemother. 2002;46:383742. DOIPubMedGoogle Scholar
  14. Smith-Moland  E, Hanson  ND, Herrera  VL, Black  AJ, Lockhart  T, Hossain  A, Plasmid-mediated, carbapenem-hydrolysing β-lactamase, KPC-2, in Klebsiella pneumoniae isolates. J Antimicrob Chemother. 2003;51:7114. DOIPubMedGoogle Scholar
  15. Poirel  L, Weldhagen  GF, Naas  T, De Champs  C, Dove  MG, Nordmann  P. GES-2, class A β-lactamase from Pseudomonas aeruginosa with increased hydrolysis of imipenem. Antimicrob Agents Chemother. 2001;45:2598603. DOIPubMedGoogle Scholar
  16. Sherwood  L. Antimicrobial use in animal feed—time to stop. N Engl J Med. 2001;345:12023. DOIPubMedGoogle Scholar
  17. White  DG, Shaohua  Z, Sudler  R, Sherry  A, Friedman  S, Chen  S, The isolation of antibiotic-resistant salmonella from retail ground meats. N Engl J Med. 2001;345:114754. DOIPubMedGoogle Scholar
  18. Mac Arthur  JV, Tuckfield  RC. Spatial patterns in antibiotic resistance among stream bacteria; effect of industrial pollution. Appl Environ Microbiol. 2000;66:37226. DOIPubMedGoogle Scholar
  19. Munesia  M, Garcia  A, Miro  E, Prats  G, Jofre  J, Navarro  F. Bacteriophages and diffusion of β-lactamase genes. Emerg Infect Dis. 2004;10:11347.PubMedGoogle Scholar
  20. Goni-Urriza  M, Capdepuy  M, Arpin  C, Raymond  N, Caumette  P, Quentin  C. Impact of an urban effluent on antibiotic resistance of riverine Enterobacteriaceae and Aeromonas spp. Appl Environ Microbiol. 2000;66:12532. DOIPubMedGoogle Scholar
  21. Baya  AM, Brayton  PR, Brown  VL, Grimes  DJ, Russek-Cohen  E, Colwell  RR. Coincident plasmids and antimicrobial resistance in marine bacteria isolated from polluted and unpolluted Atlantic Ocean samples. Appl Environ Microbiol. 1986;51:128592.PubMedGoogle Scholar
  22. Ash  RJ, Mauck  B, Morgan  M. Antibiotic resistance of gram-negative bacteria in rivers, United States. Emerg Infect Dis. 2002;8:7136.PubMedGoogle Scholar
  23. Brenner  DJ, McWorther  AC, Kai  A, Steigerwalt  AG, Farmer  JJ. Enterobacter asburiae sp. nov. a new species found in clinical specimens and reassignement of Erwinia dissolvens and Erwinia nimipressuralis to the genus Enterobacter as Enterobacter dissolvens comb. nov. and Enterobacter nimipressuralis comb. nov. J Clin Microbiol. 1986;23:111420.PubMedGoogle Scholar
  24. Avidor  B, Kletter  Y, Abulafia  S, Golan  Y, Ephros  M, Giladi  M. Molecular diagnosis of cat scratch disease: a two-step approach. J Clin Microbiol. 1997;35:192430.PubMedGoogle Scholar
  25. National Committee for Clinical Laboratory Standards. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically. 6th ed. Approved standard M7-A5. Wayne (PA): The Committee; 2003.
  26. Poirel  L, Guibert  M, Bellais  S, Naas  T, Nordmann  P. Integron- and carbenicillinase-mediated reduced susceptibility to amoxicillin-clavulanic acid in isolates of multidrug-resistant Salmonella enterica serotype Typhimurium DT104 from French patients. Antimicrob Agents Chemother. 1999;43:1098104.PubMedGoogle Scholar
  27. Poirel  L, Naas  T, Guibert  M, Chaibi  EB, Labia  R, Nordmann  P. Molecular and biochemical characterization of VEB-1, a novel class A extended-spectrum β-lactamase encoded by an Escherichia coli integron gene. Antimicrob Agents Chemother. 1999;43:57381.PubMedGoogle Scholar
  28. Nazarowec-White  M, Farber  JM. Phenotypic and genotypic typing food and clinical isolates of Enterobacter sakazakii. J Med Microbiol. 1999;48:55967. DOIPubMedGoogle Scholar
  29. Telenius  H, Carter  NP, Bebb  CE, Nordenskjold  M, Ponder  BA, Tunnacliffe  A. Degenerate oligonucleotide-primer PCR: general amplification of target DNA by single degenerate primer. Genomics. 1992;13:71825. DOIPubMedGoogle Scholar
  30. Kieser  T. Factors affecting the isolation of CCC DNA from Streptomyces lividans and Escherichia coli. Plasmid. 1984;12:1936. DOIPubMedGoogle Scholar
  31. Danel  F, Hall  LM, Gur  D, Livermore  DM. OXA-14, another extended-spectrum variant of OXA-10 (PSE-2) β-lactamase from Pseudomonas aeruginosa. Antimicrob Agents Chemother. 1995;39:18814.PubMedGoogle Scholar
  32. Churchward  G, Belin  D, Nagamine  Y. A pSC101-derived plasmid which shows no sequence homology to other commonly used cloning vectors. Gene. 1984;31:16571. DOIPubMedGoogle Scholar
  33. Michiels  T, Cornelis  G, Ellis  K, Grinsted  J. Tn2501, a component of the lactose transposon Tn951, is an example of a new category of class II transposable elements. J Bacteriol. 1987;169:62431.PubMedGoogle Scholar
  34. Pottumarthy  S, Smith-Moland  E, Juretschko  S, Swanzy  SR, Thomson  KS, Fritsche  TR. NmcA carbapenem-hydrolyzing enzyme in Enterobacter cloacae in North America. Emerg Infect Dis. 2003;9:9991002.PubMedGoogle Scholar
  35. Mimoz  O, Léotard  S, Jacolot  A, Padoin  C, Louchahi  K, Petitjean  O, Efficacies of imipenem, meropenem, cefepime, and ceftazidime in rats with experimental pneumonia due to a carbapenem-hydrolyzing β-lactamase-producing strain of Enterobacter cloacae. Antimicrob Agents Chemother. 2000;44:88590. DOIPubMedGoogle Scholar

Main Article

Page created: April 26, 2011
Page updated: April 26, 2011
Page reviewed: April 26, 2011
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.
file_external