Volume 13, Number 10—October 2007
THEME ISSUE
Global Poverty and Human Development
Research
Cost-effectiveness of Algorithms for Confirmation Test of Human African Trypanosomiasis
Table 2
Probabilities used in baseline scenario and plausible range*
Characteristic | Baseline value, % | Reference | Plausible range, % | Reference |
---|---|---|---|---|
HAT prevalence | 1.0 | Annual reports PNLTHA (1995–2002) | 0.5–5.0 | Annual reports PNLTHA (1995-2002) |
LNP sensitivity | 18.8 | (20) | 18.8–58.6 | (3,4) |
LNP specificity | 100.0 | By convention | NA | |
FBE sensitivity | 3.9 | (4) | 3.9–22.4 | (3,4) |
FBE specificity | 100.0 | By convention | NA | |
TBF sensitivity | 27.3 | (4) | 27.3–34.5 | (3,4) |
TBF specificity | 100.0 | By convention | NA | |
CTC sensitivity | 56.5 | (4) | 29.0–73.0 | (3,7) |
CTC specificity | 100.0 | By convention | NA | |
mAECT sensitivity | 75.3 | (4) | 43.0–88.0 | (3,7) |
mAECT specificity | 100.0 | By convention | NA | |
CATT whole blood sensitivity | 90.4 | (23) | 68.8–99.2 | (21–24); John M (unpub. data) |
CATT whole blood specificity | 96.5 | (23) | 83.5–98.4 | (21,23,24) |
CATT titration sensitivity† | 78.8 | (4) | 78.8–100.0 | In absence of data in literature, we considered the maximum of 100% |
CATT titration specificity† | 59.0 | (4) | 59.0–100.0 | In absence of data in literature, we considered the maximum of 100% |
Pentamidine efficacy | 98.0 | ‡ | 98.0–99.0 | (25) |
Melarsoprol efficacy | 90.0 | ‡ | 70.0–96.3 | (25,26) |
Latrogenic mortality of pentamidine | 0.1 | ‡ | 0.1–0.7 | (25) |
Latrogenic mortality of melarsoprol | 2.0 | 2.0–7.0 | (25–27) |
*HAT, human African trypanosomiasis; PNLTHA, Programme National de lutte contre la Trypanosomiase Humaine Africaine; LNP, lymph node puncture; NA, not applicable; FBE, fresh blood examination; TBF, thick blood film; CTC, capillary tube centrifugation; mAECT, mini-anion exchange centrifugation technique; CATT, card agglutination test for trypanosomiasis.
†Conditional values to CATT whole blood positive. The plausible range included the value at different end-titers (4, 16, 32).
‡Data extracted from PNLTHA/RDC annual report 1999.
References
- World Health Organization. Human African trypanosomiasis (sleeping sickness): epidemiological update. Wkly Epidemiol Rec. 2006;81:69–80.PubMedGoogle Scholar
- Blum J, Nkunku S, Burri C. Clinical description of encephalopathic syndromes and risk factors for their occurrence and outcome during melarsoprol treatment of human African trypanosomiasis. Trop Med Int Health. 2001;6:390–400. DOIPubMedGoogle Scholar
- Paquet C, Castilla J, Mbulamberi D, Beaulieu MF, Gastellu Etchegorry MG, Moren A. Trypanosomiasis from Trypanosoma brucei gambiense in the center of north-west Uganda: evaluation of 5 years of control (1987–1991). Bull Soc Pathol Exot. 1995;88:38–41.PubMedGoogle Scholar
- Pépin J, Guern C, Mercier P, Moore A. Utilisation du Testryp CATT pour le dépistage de la trypanosomiase à Nioki, Zaïre. Ann Soc Belg Med Trop. 1986;66:213–24.PubMedGoogle Scholar
- Lumsden WHR, Kimber CD, Evans DA, Doig SJ. Trypanosoma brucei: miniature anion-exchange centrifugation technique for detection of low parasitaemias: adaptation for field use. Trans R Soc Trop Med Hyg. 1979;73:312–7. DOIPubMedGoogle Scholar
- Woo PTK, Kauffmann M. The haematocrit centrifuge technique for the detection of low virulent strains of trypanosomes of the Trypanosoma congolense sub-group. Acta Trop. 1971;28:304–8.PubMedGoogle Scholar
- Bailey JW, Smith DH. The quantitative buffy coat for the diagnosis of trypanosomes. Trop Doct. 1994;24:54–6.PubMedGoogle Scholar
- Weinstein MC, Fineberg HV. Clinical decision analysis. Philadelphia: WB Saunders; 1980. p. 1–351.
- Drummond MF, O'Brien BJ, Stoddart GL, Torrance GW. Methods for the economic evaluation of health care programs, 2nd ed. Oxford: Oxford University Press; 1997. p. 305.
- Stich A, Abel PM, Krishna S. Human African trypanosomiasis. BMJ. 2002;325:203–6. DOIPubMedGoogle Scholar
- Robays J, Bilengue MM, Van der Stuyft P, Boelaert M. The effectiveness of active population screening and treatment for sleeping sickness control in the Democratic Republic of Congo. Trop Med Int Health. 2004;9:542–50. DOIPubMedGoogle Scholar
- Boelaert M, Lynen L, Desjeux P, Van der Stuyft P. Cost-effectiveness of competing diagnostic-therapeutic strategies for visceral leishmaniasis. Bull World Health Organ. 1999;77:667–74.PubMedGoogle Scholar
- Chappuis F, Stivanello E, Adams K, Kidane S, Pittet A, Bouvier P. Card agglutination test for trypanosomiasis (CATT) end-dilution titer and cerebrospinal fluid cell count as predictors of human African Trypanosomiasis (Trypanosoma brucei gambiense) among serologically suspected individuals in southern Sudan. Am J Trop Med Hyg. 2004;71:313–7.PubMedGoogle Scholar
- Simarro PP, Ruiz JA, Franco JR, Josenando T. Attitude towards CATT-positive individuals without parasitological confirmation in the African Trypanosomiasis (T.b. gambiense) focus of Quicama (Angola). Trop Med Int Health. 1999;4:858–61. DOIPubMedGoogle Scholar
- Van Nieuwenhove S, Declercq J. Mass serodiagnosis and treatment of serological positives as a control strategy in Trypanosoma gambiensis. In: Crooy PG, editor. Symposium on the diagnosis of African Sleeping Sickness due to T. gambiense. Rixensart: Smith Kline-RIT; 1984. p. 71–5.
- Frézil JL, Coulm J, Alary JC. Post-therapeutic evolution of patients presenting an immunological suspicion of trypanosomiasis without parasitological proof. Med Trop (Mars). 1979;39:53–6.PubMedGoogle Scholar
- Bruneel H, Van den Eeckhout A, Molisho D, Burke J, Degroof D, Pépin J. Control of Trypanosoma Gambiense trypanosomiasis. Evaluation of a strategy based on the treatment of serologically suspected cases with a single dose of diminazene. Ann Soc Belg Med Trop. 1994;74:203–15.PubMedGoogle Scholar
- Noireau F, Lemesre JL, Nzoukoudi MY, Louembet MT, Gouteux JP, Frezil JL. Serodiagnosis of sleeping sickness in the Republic of the Congo: comparison of indirect immunofluorescent antibody test and card agglutination test. Trans R Soc Trop Med Hyg. 1988;82:237–40. DOIPubMedGoogle Scholar