Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 13, Number 10—October 2007
Research

Evolutionary Relationships between Bat Coronaviruses and Their Hosts

Jie Cui*†1, Naijian Han‡1, Daniel Streicker§, Gang Li‡, Xianchun Tang*, Zhengli Shi¶, Zhihong Hu¶, Guoping Zhao#, Arnaud Fontanet**, Yi Guan††, Linfa Wang‡‡, Gareth Jones§§, Hume E. Field¶¶, Shuyi Zhang*Comments to Author , and Peter Daszak##Comments to Author 
Author affiliations: *East China Normal University, Shanghai, People’s Republic of China; †Hebei Normal University, Hebei, People’s Republic of China; ‡Chinese Academy of Sciences, Beijing, People’s Republic of China; §University of Georgia, Athens, Georgia, USA;; ¶Wuhan Institute of Virology, Wuhan, People’s Republic of China; #Shanghai Institutes of Biological Sciences, Shanghai, People’s Republic of China; **Insitut Pasteur, Paris, France; ††University of Hong Kong, Hong Kong Special Administrative Region, People’s Republic of China; ‡‡Australian Animal Health Laboratory, Geelong, Victoria, Australia; §§University of Bristol, Bristol, United Kingdom; ¶¶Department of Primary Industries and Fisheries, Yeerongpilly, Queensland, Australia; ##Consortium for Conservation Medicine, New York, New York, USA;

Main Article

Figure 3

Phylogenetic relationships between coronaviruses (left) and their host bat species added for reference (right). Abbreviations on both sides denote viruses harbored by bats (marked as V on the left) and bats (marked as B on the right). Rs, Rhinolophus sinicus; Mm, Miniopterus magnater; Sk, Scotophilus kuhlii; Rp, R. pearsoni; Mr, Myotis ricketti; Rf, R. ferrumequinum; Tp, Tylonycteris pachypus; Pp, Pipistrellus pipistrellus; Pa, P. abramus; Rm, R. macrotis. Values below branches are Bayesian posterior probabilities. Although some of these values are low, our analysis demonstrated a pathway for future study (28). Lines between the 2 trees were added to help visualize virus and host sequence congruence or incongruence.

Figure 3. Phylogenetic relationships between coronaviruses (left) and their host bat species added for reference (right). Abbreviations on both sides denote viruses harbored by bats (marked as V on the left) and bats (marked as B on the right). Rs, Rhinolophus sinicus; Mm, Miniopterus magnater; Sk, Scotophilus kuhlii; Rp, R. pearsoni; Mr, Myotis ricketti; Rf, R. ferrumequinum; Tp, Tylonycteris pachypus; Pp, Pipistrellus pipistrellus; Pa, P. abramus; Rm, R. macrotis. Values below branches are Bayesian posterior probabilities. Although some of these values are low, our analysis demonstrated a pathway for future study (28). Lines between the 2 trees were added to help visualize virus and host sequence congruence or incongruence.

Main Article

References
  1. Drosten  C, Gunther  S, Preiser  W, van der Werf  S, Brodt  HR, Bercker  S, Identification of a novel coronavirus in patients with severe acute respiratory syndrome. N Engl J Med. 2003;348:196776. DOIPubMedGoogle Scholar
  2. Kuiken  T, Fouchier  RA, Schutten  M, Rimmelzwaan  GF, van Amerongen  G, van Riel  D, Newly discovered coronavirus as the primary cause of severe acute respiratory syndrome. Lancet. 2003;362:26370. DOIPubMedGoogle Scholar
  3. Guan  Y, Zheng  BJ, He  YQ, Liu  XL, Zhuang  ZX, Cheung  CL, Isolation and characterization of viruses related to the SARS coronavirus from animals in southern China. Science. 2003;302:2768. DOIPubMedGoogle Scholar
  4. van der Hoek  L, Pyrc  K, Jebbink  MF, Vermeulen-Oost  W, Berkhout  RJ, Wolther  KC, Identification of a new human coronavirus. Nat Med. 2004;10:36873. DOIPubMedGoogle Scholar
  5. Woo  PC, Lau  SK, Chu  CM, Chan  KH, Tsoi  HW, Huang  Y, Characterization and complete genome sequence of a novel coronavirus, coronavirus HKU1, from patients with pneumonia. J Virol. 2005;79:88495. DOIPubMedGoogle Scholar
  6. Li  W, Shi  Z, Yu  M, Ren  W, Smith  C, Epstein  JH, Bats are natural reservoirs of SARS-like coronaviruses. Science. 2005;310:6769. DOIPubMedGoogle Scholar
  7. Lau  SK, Woo  PC, Li  KS, Huang  Y, Tsoi  HW, Wong  BH, Severe acute respiratory syndrome coronavirus-like virus in Chinese horseshoe bats. Proc Natl Acad Sci U S A. 2005;102:140405. DOIPubMedGoogle Scholar
  8. Simmons  NB. Order Chiroptera. In: Wilson DE, Reeder DM, editors. Mammal species of the world. Baltimore: Johns Hopkins University Press; 2005. p. 312–529.
  9. Poon  LL, Chu  DK, Chan  KH, Wong  OK, Ellis  TM, Leung  YH, Identification of a novel coronavirus in bats. J Virol. 2005;79:20019. DOIPubMedGoogle Scholar
  10. Tang  XC, Zhang  JX, Zhang  SY, Wang  P, Fan  XH, Li  LF, Prevalence and genetic diversity of coronaviruses in bats from China. J Virol. 2006;80:748190. DOIPubMedGoogle Scholar
  11. Woo  PC, Lau  SK, Li  KS, Poon  RW, Wong  BH, Tsoi  HW, Molecular diversity of coronaviruses in bats. Virology. 2006;351:1807. DOIPubMedGoogle Scholar
  12. Chu  DK, Poon  LL, Chan  KH, Chen  H, Guan  Y, Yuen  KY, Coronaviruses in bent-winged bats (Miniopterus spp.). J Gen Virol. 2006;87:24616. DOIPubMedGoogle Scholar
  13. Lukashov  VV, Goudsmit  J. Evolutionary relationships among parvoviruses: virus-host coevolution among autonomous primate parvoviruses and links between adeno-associated and avian parvoviruses. J Virol. 2001;75:272940. DOIPubMedGoogle Scholar
  14. Kariwa  H. Bunyavirus virus and host relationship: the coevolution between hantavirus and rodent. Uirsu. 2002;52:617.
  15. Herniou  EA, Olszewski  JA, O’Reilly  DR, Cory  JS. Ancient coevolution of baculoviruses and their insect hosts. J Virol. 2004;78:324451. DOIPubMedGoogle Scholar
  16. Perez-Losada  M, Christensen  RG, McClellan  DA, Adams  BJ, Viscidi  RP, Demma  JC, Comparing phylogenetic codivergence between polyomaviruses and their hosts. J Virol. 2006;80:56639. DOIPubMedGoogle Scholar
  17. Page  RD. Parallel phylogenies: reconstructing the history of host-parasite assemblages. Cladistics. 1994;10:15573. DOIGoogle Scholar
  18. Antonovics  J, Hood  M, Partain  J. The ecology and genetics of a host shift: Microbotryum as a model system. Am Nat. 2002;160:S4053. DOIPubMedGoogle Scholar
  19. Holmes  EC. The phylogeography of human viruses. Mol Ecol. 2004;13:74556. DOIPubMedGoogle Scholar
  20. Chen  H, Smith  G, Li  KS, Wang  J, Fan  XH, Rayner  JM, Establishment of multiple sublineages of H5N1 influenza virus in Asia: implications for pandemic control. Proc Natl Acad Sci U S A. 2006;103:284550. DOIPubMedGoogle Scholar
  21. Li  G, Jones  G, Rossiter  SJ, Chen  S, Parson  S, Zhang  S. Phylogenetics of small horseshoe bats from East Asia based on mitochondrial DNA sequence variation. J Mammal. 2006;87:123440. DOIGoogle Scholar
  22. Irwin  DM, Kocher  TD, Wilson  AC. Evolution of the cytochrome b gene of mammals. J Mol Evol. 1991;32:12844. DOIPubMedGoogle Scholar
  23. Thompson  JD, Gibson  TJ, Plewniak  F, Jeanmouqin  F, Higgins  DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 1997;25:487682. DOIPubMedGoogle Scholar
  24. Huelsenbeck  JP, Ronquist  F. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics. 2001;17:7545. DOIPubMedGoogle Scholar
  25. Kumar  S, Tamura  K, Nei  M. MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform. 2004;5:15063. DOIPubMedGoogle Scholar
  26. Posada  D, Crandall  KA. Modeltest: testing the model of DNA substitution. Bioinformatics. 1998;14:8178. DOIPubMedGoogle Scholar
  27. Swofford  DL. PAUP* beta version: phylogenetic analysis using parsimony (*and other methods). Version 4. Sunderland (MA): Sinauer Associates; 2002.
  28. Nei  M. Molecular evolutionary genetics. New York: Columbia University Press; 1987.
  29. Excoffier  L, Laval  G, Schneider  S. Arlequin ver. 3.0: an integrated software package for population genetics data analysis. Evol Bioinform Online. 2005;1:4750.PubMedGoogle Scholar
  30. Miller-Butterworth  CM, Jacobs  DS, Harley  EH. Strong population substructure is correlated with morphology and ecology in a migratory bat. Nature. 2003;424:18791. DOIPubMedGoogle Scholar
  31. Holmes  EC. Error thresholds and the constraints to RNA virus evolution. Trends Microbiol. 2003;11:5436. DOIPubMedGoogle Scholar
  32. Dobson  AP. What links bats to emerging infectious diseases? Science. 2005;310:6289. DOIPubMedGoogle Scholar
  33. Calisher  CH, Childs  JE, Field  HE, Holmes  KV, Schountz  T. Bats: important reservoir hosts of emerging viruses. Clin Microbiol Rev. 2006;19:53145. DOIPubMedGoogle Scholar
  34. Vijaykrishna  D, Smith  GJ, Zhang  JX, Peiris  JS, Chen  H, Guan  Y. Evolutionary insights into the ecology of coronaviruses. J Virol. 2007;81:401220. DOIPubMedGoogle Scholar
  35. Saif  LJ. Animal coronaviruses: what can they teach us about the severe acute respiratory syndrome? Rev Sci Tech. 2004;23:64360.PubMedGoogle Scholar
  36. Burke  DS. The evolvability of emerging viruses. In: Nelson AM, Horsburgh CR, editors. Pathology of emerging infections. Washington: American Society for Microbiology; 1998. p. 1–12.
  37. Dominguez  SR, O’Shea  TJ, Oko  LM, Holmes  KV. Detection of group 1 coronaviruses in bats in North America. Emerg Infect Dis. 2007;13:1295300.PubMedGoogle Scholar
  38. Müller  MA, Paweska  JT, Leman  PA, Drosten  C, Grywna  K, Kemp  A, Coronavirus antibodies in African bat species. Emerg Infect Dis. 2007;13:136770.PubMedGoogle Scholar

Main Article

1These authors contributed equally to this study.

Page created: July 02, 2010
Page updated: July 02, 2010
Page reviewed: July 02, 2010
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.
file_external