Volume 14, Number 2—February 2008
Research
Genetic Characterization of Feline Leukemia Virus from Florida Panthers
Figure 2
References
- Culver M, Johnson WE, Pecon-Slattery J, O’Brien SJ. Genomic ancestry of the American puma (Puma concolor). J Hered. 2000;91:186–97. DOIPubMedGoogle Scholar
- Roelke ME, Martenson JS, O’Brien SJ. The consequences of demographic reduction and genetic depletion in the endangered Florida panther. Curr Biol. 1993;3:340–50. DOIPubMedGoogle Scholar
- Roelke ME, Forrester DJ, Jacobson ER, Kollias GV, Scott FW, Barr MC, Seroprevalence of infectious disease agents in free-ranging Florida panthers (Felis concolor coryi). J Wildl Dis. 1993;29:36–49.PubMedGoogle Scholar
- Maehr DS, Lacy R. Avoiding the lurking pitfalls in Florida panther recovery. Wildl Soc Bull. 2002;30:971–8.
- Cunningham MW, Brown MA, Shindle DB, Terrell SP, Hayes KA, Ferree BC, Epizootiology and management of feline leukemia virus in the Florida puma. J Wildl Dis. In press.
- Hardy WD Jr, Old LJ, Hess PW, Essex M, Cotter S. Horizontal transmission of feline leukaemia virus. Nature. 1973;244:266–9. DOIPubMedGoogle Scholar
- Jarrett WF, Crawford EM, Martin WB, Davie F. A virus-like particle associated with leukemia (lymphosarcoma). Nature. 1964;202:567–9. DOIPubMedGoogle Scholar
- Mullins JI, Hoover EA. Molecular aspects of feline leukemia virus pathogenesis. In: Gallo RC, Wong-Staal F, editors. Retrovirus biology and human disease. New York: Dekker; 1990. p. 87–116.
- Denner J. How does HIV induce AIDS? The virus protein hypothesis. J Hum Virol. 2000;3:81–2.PubMedGoogle Scholar
- Abujamra AL, Faller DV, Ghosh SK. Mutations that abrogate transactivational activity of the feline leukemia virus long terminal repeat do not affect virus replication. Virology. 2003;309:294–305. DOIPubMedGoogle Scholar
- Chandhasin C, Coan PN, Pandrea I, Grant CK, Lobelle-Rich PA, Puetter A, Unique long terminal repeat and surface glycoprotein gene sequences of feline leukemia virus as determinants of disease outcome. J Virol. 2005;79:5278–87. DOIPubMedGoogle Scholar
- Finstad SL, Prabhu S, Rulli KR, Levy LS. Regulation of FeLV-945 by c-Myb binding and CBP recruitment to the LTR. Virol J. 2004;1:3. DOIPubMedGoogle Scholar
- Overbaugh J, Bangham CR. Selection forces and constraints on retroviral sequence variation. Science. 2001;292:1106–9. DOIPubMedGoogle Scholar
- Phipps AJ, Hayes KA, Al-dubaib M, Roy-Burman P, Mathes LE. Inhibition of feline leukemia virus subgroup A infection by coinoculation with subgroup B. Virology. 2000;277:40–7. DOIPubMedGoogle Scholar
- Stewart MA, Warnock M, Wheeler A, Wilkie N, Mullins JI, Onions DE, Nucleotide sequences of a feline leukemia virus subgroup A envelope gene and long terminal repeat and evidence for the recombinational origin of subgroup B viruses. J Virol. 1986;58:825–34.PubMedGoogle Scholar
- Okabe H, Twiddy E, Gilden RV, Hatanaka M, Hoover EA, Olsen RG. FeLV-related sequences in DNA from a FeLV-free cat colony. Virology. 1976;69:798–801. DOIPubMedGoogle Scholar
- Neil JC, Fulton R, Rigby M, Stewart M. Feline leukaemia virus: generation of pathogenic and oncogenic variants. Curr Top Microbiol Immunol. 1991;171:67–93.PubMedGoogle Scholar
- Donahue PR, Quackenbush SL, Gallo MV, deNoronha CM, Overbaugh J, Hoover EA, Viral genetic determinants of T-cell killing and immunodeficiency disease induction by the feline leukemia virus FeLV-FAIDS. J Virol. 1991;65:4461–9.PubMedGoogle Scholar
- Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 1997;25:4876–82. DOIPubMedGoogle Scholar
- Maddison DR, Maddison WP. MacClade 3.05. Sunderland (MA): Sinauer Associates; 1995.
- Posada D, Crandall KA. MODELTEST: testing the model of DNA substitution. Bioinformatics. 1998;14:817–8. DOIPubMedGoogle Scholar
- Kumar S, Tamura K, Nei M. MEGA3: Integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform. 2004;5:150–63. DOIPubMedGoogle Scholar
- Benveniste RE, Todaro GJ. Segregation of RD-114 and FeLV-related sequences in crosses between domestic cat and leopard cat. Nature. 1975;257:506–8. DOIPubMedGoogle Scholar
- Reeves RH, O’Brien SJ. Molecular genetic characterization of the RD-114 gene family of endogenous feline retroviral sequences. J Virol. 1984;52:164–71.PubMedGoogle Scholar
- Chandhasin C, Coan PN, Levy LS. Subtle mutational changes in the SU protein of a natural feline leukemia virus subgroup A isolate alter disease spectrum. J Virol. 2005;79:1351–60. DOIPubMedGoogle Scholar
- Chandhasin C, Lobelle-Rich P, Levy LS. Feline leukaemia virus LTR variation and disease association in a geographical and temporal cluster. J Gen Virol. 2004;85:2937–42. DOIPubMedGoogle Scholar
- Roelke ME, Pecon-Slattery J, Taylor S, Citino S, Brown E, Packer C, T-lymphocyte profiles in FIV-infected wild lions and pumas reveal CD4 depletion. J Wildl Dis. 2006;42:234–48.PubMedGoogle Scholar
- Cohen ND, Carter CN, Thomas MA, Lester TL, Eugster AK. Epizootiologic association between feline immunodeficiency virus infection and feline leukemia virus seroPositivity. J Am Vet Med Assoc. 1990;197:220–5.PubMedGoogle Scholar
- Ishida T, Washizu T, Toriyabe K, Motoyoshi S, Tomoda I, Pedersen NC. Feline immunodeficiency virus infection in cats of Japan. J Am Vet Med Assoc. 1989;194:221–5.PubMedGoogle Scholar
- Lee IT, Levy JK, Gorman SP, Crawford PC, Slater MR. Prevalence of feline leukemia virus infection and serum antibodies against feline immunodeficiency virus in unowned free-roaming cats. J Am Vet Med Assoc. 2002;220:620–2. DOIPubMedGoogle Scholar
- O’Connor TP Jr, Tonelli QJ, Scarlett JM. Report of the National FeLV/FIV Awareness Project. J Am Vet Med Assoc. 1991;199:1348–53.PubMedGoogle Scholar
- Yamamoto JK, Hansen H, Ho EW, Morishita TY, Okuda T, Sawa TR, Epidemiologic and clinical aspects of feline immunodeficiency virus infection in cats from the continental United States and Canada and possible mode of transmission. J Am Vet Med Assoc. 1989;194:213–20.PubMedGoogle Scholar
- Troyer JL, Pecon-Slattery J, Roelke ME, Johnson W, VandeWoude S, Vazquez-Salat N, Seroprevalence and genomic divergence of circulating strains of feline immunodeficiency virus among Felidae and Hyaenidae species. J Virol. 2005;79:8282–94. DOIPubMedGoogle Scholar
- Paul-Murphy J, Work T, Hunter D, McFie E, Fjelline D. Serologic survey and serum biochemical reference ranges of the free-ranging mountain lion (Felis concolor) in California. J Wildl Dis. 1994;30:205–15.PubMedGoogle Scholar
- Osofsky SA, Hirsch KJ, Zuckerman EE, Hardy WD. Feline lentivirus and feline oncovirus status of free-ranging lions (Panthera leo), leopards (Panthera pardus), and cheetahs (Acinonyx jubatus) in Botswana: a regional perspective. J Zoo Wildl Med. 1996;27:453–67.
- Jessup D. Feline leukemia virus infection and renal spirochetosis in a free-ranging cougar (Felis concolor). J Zoo Wildl Med. 1993;24:73–9.
- Roelke ME, Martenson JS, O’Brien SJ. The consequences of demographic reduction and genetic depletion in the endangered Florida panther. Curr Biol. 1993;3:340–50. DOIPubMedGoogle Scholar
- Pontius JU, Mullikin JC, Smith DR, Agencourt Sequencing Team, Lindblad-Toh K, Gnerre S, et al. Initial sequence and comparative analysis of the cat genome. Genome Res. 2007;17:1675–89. DOIPubMedGoogle Scholar
Page created: July 12, 2010
Page updated: July 12, 2010
Page reviewed: July 12, 2010
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.