Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 15, Number 3—March 2009
Research

Shiga Toxin–producing Escherichia coli Strains Negative for Locus of Enterocyte Effacement

Hayley J. Newton1, Joan Sloan1, Dieter M. Bulach, Torsten Seemann, Cody C. Allison, Marija Tauschek, Roy M. Robins-Browne, James C. Paton, Thomas S. Whittam, Adrienne W. Paton, and Elizabeth L. HartlandComments to Author 
Author affiliations: Monash University, Melbourne, Victoria, Australia (H.J. Newton, J. Sloan, D.M. Bulach, T. Seemann, C.C. Allison, E.L. Hartland); University of Melbourne, Melbourne (H.J. Newton, J. Sloan, M. Tauschek, R.M. Robins-Browne, E.L. Hartland); University of Adelaide, Adelaide, South Australia, Australia (J.C. Paton, A.W. Paton); Michigan State University, East Lansing, Michigan, USA (T.S. Whittam)

Main Article

Table 1

Escherichia coli isolates used in this study*

Isolate Serogroup Origin† LEE‡ Ref.
EH41 O113:H21 HUS (17,21,22)
EH53 O113:H21 HUS (11,23)
EH71 O113:H21 HUS (17)
97025659 O113:H21 TTP
95016910 O113:H21 Food
95063160 O113:H21 Cow
95063151 O113:H21 Human
96037512 O113:H21 Food
97001061 O113:H21 Food
99008358 O113:H21 Dysentery
EH42 O116:H21 HUS (17)
EH43 O130:H11 HUS (11)
EH48 O5:H– HUS (UTI)
9724772 O5:H– Diarrhea
EH69 O1:H7 HUS (11)
EH52 NT:H7 HUS (11,23)
9816261 O76:H7 HUS
9611588 O128:H2 Diarrhea
EH5 O91:H– Diarrhea (17)
EH32 O91:H–
9730196 O87:H16 Asymptomatic
9619262-1 OR:H– Diarrhea
96/4591 O123:H– Cow
85-170 O157:H7 HUS +
EDL933 O157:H7 HUS + (24)
84-284 O157:H7 +
EH9 O157:H7 +
9515477 O157:H7 HC +
9515480 O157:H7 HUS +
9515474 O157:H7 HUS +
9924822 O157:H7 HUS +
95005698 O157:H– HUS +
95051613 O157:H– HC +
EH70 O157:H– HC +
E45035 O111:H– HUS +
ED142 O111:H– HUS +
EH38 O111:H– HUS +
EH44 O26 HUS +
EH6 O26:H11 +
EH34 O26:H11 +
EH1 O26:H21 Diarrhea +
EH68 O147:H– Diarrhea +
EH22 O145:H25 +

*Isolates shown in boldface were used for allelic profiling and multilocus sequence typing phylogenetic analysis. LEE, locus of enterocyte effacement; Ref., reference; HUS, hemolytic uremic syndrome; TTP, thrombocytopenic purpura; UTI, urinary tract infection; HC, hemorrhagic colitis.
†Clinical information and source are provided where known.
‡Symbols indicate presence (+) or absence (–) of the eae gene.

Main Article

References
  1. Nataro  JP, Kaper  JB. Diarrheagenic Escherichia coli. Clin Microbiol Rev. 1998;11:142201.PubMedGoogle Scholar
  2. Perna  NT, Mayhew  GF, Posfai  G, Elliott  S, Donnenberg  MS, Kaper  JB, Molecular evolution of a pathogenicity island from enterohemorrhagic Escherichia coli O157:H7. Infect Immun. 1998;66:38107.PubMedGoogle Scholar
  3. Frankel  G, Phillips  AD, Rosenshine  I, Dougan  G, Kaper  JB, Knutton  S. Enteropathogenic and enterohaemorrhagic Escherichia coli: more subversive elements. Mol Microbiol. 1998;30:91121. DOIPubMedGoogle Scholar
  4. Elliott  SJ, Wainwright  LA, McDaniel  TK, Jarvis  KG, Deng  YK, Lai  LC, The complete sequence of the locus of enterocyte effacement (LEE) from enteropathogenic Escherichia coli E2348/69. Mol Microbiol. 1998;28:14. DOIPubMedGoogle Scholar
  5. Deng  W, Li  Y, Vallance  BA, Finlay  BB. Locus of enterocyte effacement from Citrobacter rodentium: sequence analysis and evidence for horizontal transfer among attaching and effacing pathogens. Infect Immun. 2001;69:632335. DOIPubMedGoogle Scholar
  6. Marches  O, Nougayrede  JP, Boullier  S, Mainil  J, Charlier  G, Raymond  I, Role of tir and intimin in the virulence of rabbit enteropathogenic Escherichia coli serotype O103:H2. Infect Immun. 2000;68:217182. DOIPubMedGoogle Scholar
  7. McKee  ML, Melton-Celsa  AR, Moxley  RA, Francis  DH, O'Brien  AD. Enterohemorrhagic Escherichia coli O157:H7 requires intimin to colonize the gnotobiotic pig intestine and to adhere to HEp-2 cells. Infect Immun. 1995;63:373944.PubMedGoogle Scholar
  8. Deng  W, Vallance  BA, Li  Y, Puente  JL, Finlay  BB. Citrobacter rodentium translocated intimin receptor (Tir) is an essential virulence factor needed for actin condensation, intestinal colonization and colonic hyperplasia in mice. Mol Microbiol. 2003;48:95115. DOIPubMedGoogle Scholar
  9. Tacket  CO, Sztein  MB, Losonsky  G, Abe  A, Finlay  BB, McNamara  BP, Role of EspB in experimental human enteropathogenic Escherichia coli infection. Infect Immun. 2000;68:368995. DOIPubMedGoogle Scholar
  10. Bonnet  R, Souweine  B, Gauthier  G, Rich  C, Livrelli  V, Sirot  J, Non-O157:H7 Stx2-producing Escherichia coli strains associated with sporadic cases of hemolytic-uremic syndrome in adults. J Clin Microbiol. 1998;36:177780.PubMedGoogle Scholar
  11. Elliott  EJ, Robins-Browne  RM, O'Loughlin  EV, Bennett-Wood  V, Bourke  J, Henning  P, Nationwide study of haemolytic uraemic syndrome: clinical, microbiological, and epidemiological features. Arch Dis Child. 2001;85:12531. DOIPubMedGoogle Scholar
  12. Paton  AW, Woodrow  MC, Doyle  RM, Lanser  JA, Paton  JC. Molecular characterization of a Shiga toxigenic Escherichia coli O113:H21 strain lacking eae responsible for a cluster of cases of hemolytic-uremic syndrome. J Clin Microbiol. 1999;37:335761.PubMedGoogle Scholar
  13. Karmali  MA, Petric  M, Lim  C, Fleming  PC, Arbus  GS, Lior  H. The association between idiopathic hemolytic uremic syndrome and infection by verotoxin-producing Escherichia coli. J Infect Dis. 1985;151:77582.PubMedGoogle Scholar
  14. Paton  AW, Beddoe  T, Thorpe  CM, Whisstock  JC, Wilce  MC, Rossjohn  J, AB5 subtilase cytotoxin inactivates the endoplasmic reticulum chaperone BiP. Nature. 2006;443:54852. DOIPubMedGoogle Scholar
  15. Paton  AW, Srimanote  P, Talbot  UM, Wang  H, Paton  JC. A new family of potent AB(5) cytotoxins produced by Shiga toxigenic Escherichia coli. J Exp Med. 2004;200:3546. DOIPubMedGoogle Scholar
  16. Wang  H, Paton  JC, Paton  AW. Pathologic changes in mice induced by subtilase cytotoxin, a potent new Escherichia coli AB5 toxin that targets the endoplasmic reticulum. J Infect Dis. 2007;196:1093101. DOIPubMedGoogle Scholar
  17. Luck  SN, Bennett-Wood  V, Poon  R, Robins-Browne  RM, Hartland  EL. Invasion of epithelial cells by locus of enterocyte effacement-negative enterohemorrhagic Escherichia coli. Infect Immun. 2005;73:306371. DOIPubMedGoogle Scholar
  18. Luck  SN, Badea  L, Bennett-Wood  V, Robins-Browne  R, Hartland  EL. Contribution of FliC to epithelial cell invasion by enterohemorrhagic Escherichia coli O113:H21. Infect Immun. 2006;74:69997004. DOIPubMedGoogle Scholar
  19. Rogers  TJ, Paton  JC, Wang  H, Talbot  UM, Paton  AW. Reduced virulence of an fliC mutant of Shiga-toxigenic Escherichia coli O113:H21. Infect Immun. 2006;74:19626. DOIPubMedGoogle Scholar
  20. Boerlin  P, Chen  S, Colbourne  JK, Johnson  R, De Grandis  S, Gyles  C. Evolution of enterohemorrhagic Escherichia coli hemolysin plasmids and the locus for enterocyte effacement in Shiga toxin-producing E. coli. Infect Immun. 1998;66:255361.PubMedGoogle Scholar
  21. Leyton  DL, Sloan  J, Hill  RE, Doughty  S, Hartland  EL. Transfer region of pO113 from enterohemorrhagic Escherichia coli: similarity with R64 and identification of a novel plasmid-encoded autotransporter. Infect Immun. 2003;71:630719. DOIPubMedGoogle Scholar
  22. Doughty  S, Sloan  J, Bennett-Wood  V, Robertson  M, Robins-Browne  RM, Hartland  EL. Identification of a novel fimbrial gene cluster related to long polar fimbriae in locus of enterocyte effacement-negative strains of enterohemorrhagic Escherichia coli. Infect Immun. 2002;70:67619. DOIPubMedGoogle Scholar
  23. Bennett-Wood  VR, Russell  J, Bordun  AM, Johnson  PD, Robins-Browne  RM. Detection of enterohaemorrhagic Escherichia coli in patients attending hospital in Melbourne, Australia. Pathology. 2004;36:34551. DOIPubMedGoogle Scholar
  24. Perna  NT, Plunkett  G III, Burland  V, Mau  B, Glasner  JD, Rose  DJ, Genome sequence of enterohaemorrhagic Escherichia coli O157:H7. Nature. 2001;409:52933. DOIPubMedGoogle Scholar
  25. Seemann  T. Victorian Bioinformatics Consortium. Asia Pacific Biotech News. 2006;10.
  26. Saitou  N, Nei  M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987;4:40625.PubMedGoogle Scholar
  27. Thompson  JD, Higgins  DG, Gibson  TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994;22:467380. DOIPubMedGoogle Scholar
  28. Kumar  S, Tamura  K, Nei  M. MEGA3: Integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform. 2004;5:15063. DOIPubMedGoogle Scholar
  29. Srimanote  P, Paton  AW, Paton  JC. Characterization of a novel type IV pilus locus encoded on the large plasmid of locus of enterocyte effacement-negative Shiga-toxigenic Escherichia coli strains that are virulent for humans. Infect Immun. 2002;70:3094100. DOIPubMedGoogle Scholar
  30. Komano  T, Yoshida  T, Narahara  K, Furuya  N. The transfer region of IncI1 plasmid R64: similarities between R64 tra and Legionella icm/dot genes. Mol Microbiol. 2000;35:134859. DOIPubMedGoogle Scholar
  31. Burland  V, Shao  Y, Perna  NT, Plunkett  G, Sofia  HJ, Blattner  FR. The complete DNA sequence and analysis of the large virulence plasmid of Escherichia coli O157:H7. Nucleic Acids Res. 1998;26:4196204. DOIPubMedGoogle Scholar
  32. Cotter  SE, Surana  NK, St Geme  JW III. Trimeric autotransporters: a distinct subfamily of autotransporter proteins. Trends Microbiol. 2005;13:199205. DOIPubMedGoogle Scholar
  33. Paton  AW, Srimanote  P, Woodrow  MC, Paton  JC. Characterization of Saa, a novel autoagglutinating adhesin produced by locus of enterocyte effacement-negative Shiga-toxigenic Escherichia coli strains that are virulent for humans. Infect Immun. 2001;69:69997009. DOIPubMedGoogle Scholar
  34. Rojas  CM, Ham  JH, Deng  WL, Doyle  JJ, Collmer  A. HecA, a member of a class of adhesins produced by diverse pathogenic bacteria, contributes to the attachment, aggregation, epidermal cell killing, and virulence phenotypes of Erwinia chrysanthemi EC16 on Nicotiana clevelandii seedlings. Proc Natl Acad Sci U S A. 2002;99:131427. DOIPubMedGoogle Scholar
  35. Reid  SD, Herbelin  CJ, Bumbaugh  AC, Selander  RK, Whittam  TS. Parallel evolution of virulence in pathogenic Escherichia coli. Nature. 2000;406:647. DOIPubMedGoogle Scholar
  36. Tarr  CL, Nelson  AM, Beutin  L, Olsen  KE, Whittam  TS. Molecular characterization reveals similar virulence gene content in unrelated clonal groups of Escherichia coli of serogroup O174 (OX3). J Bacteriol. 2008;190:13449. DOIPubMedGoogle Scholar
  37. Lim  JY, Sheng  H, Seo  KS, Park  YH, Hovde  CJ. Characterization of an Escherichia coli O157:H7 plasmid O157 deletion mutant and its survival and persistence in cattle. Appl Environ Microbiol. 2007;73:203747. DOIPubMedGoogle Scholar
  38. Dziva  F, Mahajan  A, Cameron  P, Currie  C, McKendrick  IJ, Wallis  TS, EspP, a type V-secreted serine protease of enterohaemorrhagic Escherichia coli O157:H7, influences intestinal colonization of calves and adherence to bovine primary intestinal epithelial cells. FEMS Microbiol Lett. 2007;271:25864. DOIPubMedGoogle Scholar

Main Article

1These authors contributed equally to this article.

Page created: December 07, 2010
Page updated: December 07, 2010
Page reviewed: December 07, 2010
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.
file_external