Volume 15, Number 3—March 2009
Research
Shiga Toxin–producing Escherichia coli Strains Negative for Locus of Enterocyte Effacement
Table 1
Isolate | Serogroup | Origin† | LEE‡ | Ref. |
---|---|---|---|---|
EH41 | O113:H21 | HUS | – | (17,21,22) |
EH53 | O113:H21 | HUS | – | (11,23) |
EH71 | O113:H21 | HUS | – | (17) |
97025659 | O113:H21 | TTP | – | |
95016910 | O113:H21 | Food | – | |
95063160 | O113:H21 | Cow | – | |
95063151 | O113:H21 | Human | – | |
96037512 | O113:H21 | Food | – | |
97001061 | O113:H21 | Food | – | |
99008358 | O113:H21 | Dysentery | – | |
EH42 | O116:H21 | HUS | – | (17) |
EH43 | O130:H11 | HUS | – | (11) |
EH48 | O5:H– | HUS (UTI) | – | |
9724772 | O5:H– | Diarrhea | – | |
EH69 | O1:H7 | HUS | – | (11) |
EH52 | NT:H7 | HUS | – | (11,23) |
9816261 | O76:H7 | HUS | – | |
9611588 | O128:H2 | Diarrhea | – | |
EH5 | O91:H– | Diarrhea | – | (17) |
EH32 | O91:H– | – | ||
9730196 | O87:H16 | Asymptomatic | – | |
9619262-1 | OR:H– | Diarrhea | – | |
96/4591 | O123:H– | Cow | – | |
85-170 | O157:H7 | HUS | + | |
EDL933 | O157:H7 | HUS | + | (24) |
84-284 | O157:H7 | + | ||
EH9 | O157:H7 | + | ||
9515477 | O157:H7 | HC | + | |
9515480 | O157:H7 | HUS | + | |
9515474 | O157:H7 | HUS | + | |
9924822 | O157:H7 | HUS | + | |
95005698 | O157:H– | HUS | + | |
95051613 | O157:H– | HC | + | |
EH70 | O157:H– | HC | + | |
E45035 | O111:H– | HUS | + | |
ED142 | O111:H– | HUS | + | |
EH38 | O111:H– | HUS | + | |
EH44 | O26 | HUS | + | |
EH6 | O26:H11 | + | ||
EH34 | O26:H11 | + | ||
EH1 | O26:H21 | Diarrhea | + | |
EH68 | O147:H– | Diarrhea | + | |
EH22 | O145:H25 | + |
*Isolates shown in boldface were used for allelic profiling and multilocus sequence typing phylogenetic analysis. LEE, locus of enterocyte effacement; Ref., reference; HUS, hemolytic uremic syndrome; TTP, thrombocytopenic purpura; UTI, urinary tract infection; HC, hemorrhagic colitis.
†Clinical information and source are provided where known.
‡Symbols indicate presence (+) or absence (–) of the eae gene.
References
- Nataro JP, Kaper JB. Diarrheagenic Escherichia coli. Clin Microbiol Rev. 1998;11:142–201.PubMedGoogle Scholar
- Perna NT, Mayhew GF, Posfai G, Elliott S, Donnenberg MS, Kaper JB, Molecular evolution of a pathogenicity island from enterohemorrhagic Escherichia coli O157:H7. Infect Immun. 1998;66:3810–7.PubMedGoogle Scholar
- Frankel G, Phillips AD, Rosenshine I, Dougan G, Kaper JB, Knutton S. Enteropathogenic and enterohaemorrhagic Escherichia coli: more subversive elements. Mol Microbiol. 1998;30:911–21. DOIPubMedGoogle Scholar
- Elliott SJ, Wainwright LA, McDaniel TK, Jarvis KG, Deng YK, Lai LC, The complete sequence of the locus of enterocyte effacement (LEE) from enteropathogenic Escherichia coli E2348/69. Mol Microbiol. 1998;28:1–4. DOIPubMedGoogle Scholar
- Deng W, Li Y, Vallance BA, Finlay BB. Locus of enterocyte effacement from Citrobacter rodentium: sequence analysis and evidence for horizontal transfer among attaching and effacing pathogens. Infect Immun. 2001;69:6323–35. DOIPubMedGoogle Scholar
- Marches O, Nougayrede JP, Boullier S, Mainil J, Charlier G, Raymond I, Role of tir and intimin in the virulence of rabbit enteropathogenic Escherichia coli serotype O103:H2. Infect Immun. 2000;68:2171–82. DOIPubMedGoogle Scholar
- McKee ML, Melton-Celsa AR, Moxley RA, Francis DH, O'Brien AD. Enterohemorrhagic Escherichia coli O157:H7 requires intimin to colonize the gnotobiotic pig intestine and to adhere to HEp-2 cells. Infect Immun. 1995;63:3739–44.PubMedGoogle Scholar
- Deng W, Vallance BA, Li Y, Puente JL, Finlay BB. Citrobacter rodentium translocated intimin receptor (Tir) is an essential virulence factor needed for actin condensation, intestinal colonization and colonic hyperplasia in mice. Mol Microbiol. 2003;48:95–115. DOIPubMedGoogle Scholar
- Tacket CO, Sztein MB, Losonsky G, Abe A, Finlay BB, McNamara BP, Role of EspB in experimental human enteropathogenic Escherichia coli infection. Infect Immun. 2000;68:3689–95. DOIPubMedGoogle Scholar
- Bonnet R, Souweine B, Gauthier G, Rich C, Livrelli V, Sirot J, Non-O157:H7 Stx2-producing Escherichia coli strains associated with sporadic cases of hemolytic-uremic syndrome in adults. J Clin Microbiol. 1998;36:1777–80.PubMedGoogle Scholar
- Elliott EJ, Robins-Browne RM, O'Loughlin EV, Bennett-Wood V, Bourke J, Henning P, Nationwide study of haemolytic uraemic syndrome: clinical, microbiological, and epidemiological features. Arch Dis Child. 2001;85:125–31. DOIPubMedGoogle Scholar
- Paton AW, Woodrow MC, Doyle RM, Lanser JA, Paton JC. Molecular characterization of a Shiga toxigenic Escherichia coli O113:H21 strain lacking eae responsible for a cluster of cases of hemolytic-uremic syndrome. J Clin Microbiol. 1999;37:3357–61.PubMedGoogle Scholar
- Karmali MA, Petric M, Lim C, Fleming PC, Arbus GS, Lior H. The association between idiopathic hemolytic uremic syndrome and infection by verotoxin-producing Escherichia coli. J Infect Dis. 1985;151:775–82.PubMedGoogle Scholar
- Paton AW, Beddoe T, Thorpe CM, Whisstock JC, Wilce MC, Rossjohn J, AB5 subtilase cytotoxin inactivates the endoplasmic reticulum chaperone BiP. Nature. 2006;443:548–52. DOIPubMedGoogle Scholar
- Paton AW, Srimanote P, Talbot UM, Wang H, Paton JC. A new family of potent AB(5) cytotoxins produced by Shiga toxigenic Escherichia coli. J Exp Med. 2004;200:35–46. DOIPubMedGoogle Scholar
- Wang H, Paton JC, Paton AW. Pathologic changes in mice induced by subtilase cytotoxin, a potent new Escherichia coli AB5 toxin that targets the endoplasmic reticulum. J Infect Dis. 2007;196:1093–101. DOIPubMedGoogle Scholar
- Luck SN, Bennett-Wood V, Poon R, Robins-Browne RM, Hartland EL. Invasion of epithelial cells by locus of enterocyte effacement-negative enterohemorrhagic Escherichia coli. Infect Immun. 2005;73:3063–71. DOIPubMedGoogle Scholar
- Luck SN, Badea L, Bennett-Wood V, Robins-Browne R, Hartland EL. Contribution of FliC to epithelial cell invasion by enterohemorrhagic Escherichia coli O113:H21. Infect Immun. 2006;74:6999–7004. DOIPubMedGoogle Scholar
- Rogers TJ, Paton JC, Wang H, Talbot UM, Paton AW. Reduced virulence of an fliC mutant of Shiga-toxigenic Escherichia coli O113:H21. Infect Immun. 2006;74:1962–6. DOIPubMedGoogle Scholar
- Boerlin P, Chen S, Colbourne JK, Johnson R, De Grandis S, Gyles C. Evolution of enterohemorrhagic Escherichia coli hemolysin plasmids and the locus for enterocyte effacement in Shiga toxin-producing E. coli. Infect Immun. 1998;66:2553–61.PubMedGoogle Scholar
- Leyton DL, Sloan J, Hill RE, Doughty S, Hartland EL. Transfer region of pO113 from enterohemorrhagic Escherichia coli: similarity with R64 and identification of a novel plasmid-encoded autotransporter. Infect Immun. 2003;71:6307–19. DOIPubMedGoogle Scholar
- Doughty S, Sloan J, Bennett-Wood V, Robertson M, Robins-Browne RM, Hartland EL. Identification of a novel fimbrial gene cluster related to long polar fimbriae in locus of enterocyte effacement-negative strains of enterohemorrhagic Escherichia coli. Infect Immun. 2002;70:6761–9. DOIPubMedGoogle Scholar
- Bennett-Wood VR, Russell J, Bordun AM, Johnson PD, Robins-Browne RM. Detection of enterohaemorrhagic Escherichia coli in patients attending hospital in Melbourne, Australia. Pathology. 2004;36:345–51. DOIPubMedGoogle Scholar
- Perna NT, Plunkett G III, Burland V, Mau B, Glasner JD, Rose DJ, Genome sequence of enterohaemorrhagic Escherichia coli O157:H7. Nature. 2001;409:529–33. DOIPubMedGoogle Scholar
- Seemann T. Victorian Bioinformatics Consortium. Asia Pacific Biotech News. 2006;10.
- Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987;4:406–25.PubMedGoogle Scholar
- Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994;22:4673–80. DOIPubMedGoogle Scholar
- Kumar S, Tamura K, Nei M. MEGA3: Integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform. 2004;5:150–63. DOIPubMedGoogle Scholar
- Srimanote P, Paton AW, Paton JC. Characterization of a novel type IV pilus locus encoded on the large plasmid of locus of enterocyte effacement-negative Shiga-toxigenic Escherichia coli strains that are virulent for humans. Infect Immun. 2002;70:3094–100. DOIPubMedGoogle Scholar
- Komano T, Yoshida T, Narahara K, Furuya N. The transfer region of IncI1 plasmid R64: similarities between R64 tra and Legionella icm/dot genes. Mol Microbiol. 2000;35:1348–59. DOIPubMedGoogle Scholar
- Burland V, Shao Y, Perna NT, Plunkett G, Sofia HJ, Blattner FR. The complete DNA sequence and analysis of the large virulence plasmid of Escherichia coli O157:H7. Nucleic Acids Res. 1998;26:4196–204. DOIPubMedGoogle Scholar
- Cotter SE, Surana NK, St Geme JW III. Trimeric autotransporters: a distinct subfamily of autotransporter proteins. Trends Microbiol. 2005;13:199–205. DOIPubMedGoogle Scholar
- Paton AW, Srimanote P, Woodrow MC, Paton JC. Characterization of Saa, a novel autoagglutinating adhesin produced by locus of enterocyte effacement-negative Shiga-toxigenic Escherichia coli strains that are virulent for humans. Infect Immun. 2001;69:6999–7009. DOIPubMedGoogle Scholar
- Rojas CM, Ham JH, Deng WL, Doyle JJ, Collmer A. HecA, a member of a class of adhesins produced by diverse pathogenic bacteria, contributes to the attachment, aggregation, epidermal cell killing, and virulence phenotypes of Erwinia chrysanthemi EC16 on Nicotiana clevelandii seedlings. Proc Natl Acad Sci U S A. 2002;99:13142–7. DOIPubMedGoogle Scholar
- Reid SD, Herbelin CJ, Bumbaugh AC, Selander RK, Whittam TS. Parallel evolution of virulence in pathogenic Escherichia coli. Nature. 2000;406:64–7. DOIPubMedGoogle Scholar
- Tarr CL, Nelson AM, Beutin L, Olsen KE, Whittam TS. Molecular characterization reveals similar virulence gene content in unrelated clonal groups of Escherichia coli of serogroup O174 (OX3). J Bacteriol. 2008;190:1344–9. DOIPubMedGoogle Scholar
- Lim JY, Sheng H, Seo KS, Park YH, Hovde CJ. Characterization of an Escherichia coli O157:H7 plasmid O157 deletion mutant and its survival and persistence in cattle. Appl Environ Microbiol. 2007;73:2037–47. DOIPubMedGoogle Scholar
- Dziva F, Mahajan A, Cameron P, Currie C, McKendrick IJ, Wallis TS, EspP, a type V-secreted serine protease of enterohaemorrhagic Escherichia coli O157:H7, influences intestinal colonization of calves and adherence to bovine primary intestinal epithelial cells. FEMS Microbiol Lett. 2007;271:258–64. DOIPubMedGoogle Scholar
Page created: December 07, 2010
Page updated: December 07, 2010
Page reviewed: December 07, 2010
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.